ML Aggarwal Solution Class 10 Chapter 7 Ratio and Proportion Exercise 7.2
Exercise 7.2
Question 1
Find the value of x in the following proportions :
(i) 10 : 35 = x : 42
(ii) 3 : x = 24 : 2
(iii) 2.5 : 1.5 = x : 3
(iv) x : 50 :: 3 : 2
Sol :
(i) 10 : 35 = x : 42
⇒ 35×x = 10 × 42
(ii) $3: x=24: 2$
$\Rightarrow x \times 24=3 \times 2$
$\therefore x=\frac{3 \times 2}{24}=\frac{1}{4}$
(iii) $2 \cdot 5: 1 \cdot 5=x: 3$
$\Rightarrow 1 \cdot 5 \times x=2 \cdot 5 \times 3$
$x=\frac{2 \cdot 5 \times 3}{1 \cdot 5}=5 \cdot 0$
(iv) $x: 50:: 3: 2$
$\Rightarrow x \times 2=50 \times 3$
$x=\frac{50 \times 3}{2}=75$
Question 2
Find the fourth proportional to
(i) 3, 12, 15
$\Rightarrow x=\frac{1}{4} \times \frac{1}{5} \times \frac{3}{1}=\frac{3}{20}$
(iii) Let fourth proportional to
$1 \cdot 5,2 \cdot 5,4 \cdot 5$ be $x$
then $1 \cdot 5: 2 \cdot 5:: 4 \cdot 5: x$
$\therefore 1 \cdot 5 \times x=2 \cdot 5 \times 4 \cdot 5$
$x=\frac{2 \cdot 5 \times 4 \cdot 5}{1 \cdot 5}=7 \cdot 5$
(iv) Let fourth proportional to 9.6kg, 7.2 kg, 28.8 kg be x
then 9.6 : 7.2 :: 28.8 : x
$\Rightarrow \quad 9 \cdot 6 \times x=7 \cdot 2 \times 28 \cdot 8$
$x=\frac{7 \cdot 2 \times 28 \cdot 8}{9 \cdot 6}=21 \cdot 6$
Question 3
Find the third proportional to
(i) 5, 10
(ii) 0.24, 0.6
(iii) Rs. 3, Rs. 12
Sol :
(i) Let x be the third proportional to 5, 10,
then 5 : 10 :: 10 : x
∴Third proportional =20
(ii) Let x be the third proportional to 0.24, 0.6
then 0.24 : 0.6 :: 0.6 : x
$\therefore 0 \cdot 24 \times x=0 \cdot 6 \times 0 \cdot 6$
$x=\frac{0 \cdot 6 \times 0 \cdot 6}{0 \cdot 24}=1 \cdot 5$
∴ Third proportional =1.5
(iii) Let x be the third proportional to Rs. 3 and Rs. 12 then Rs. 3: Rs. 12: Rs. 12: x
$\therefore x=\frac{12 \times 12}{3}=48$
$\therefore$ Third proportional Rs 48
(iv) Let x be the third proportional to $5 \frac{1}{4}$ and 7
then $5 \frac{1}{4}: 7:: 7: x$
$\Rightarrow \frac{21}{4}: 7:: 7: x$
$\therefore \frac{21}{4} \times x=7 \times 7$
$x=\frac{7 \times 7 \times 4}{21}$
$=\frac{28}{3}=9 \frac{1}{3}$
∴ Third proportional $=9 \frac{1}{3}$ Ans.
Question 4
Find the mean proportion of:
(i) 5 and 80
(ii) $\frac{1}{12}$ and $\frac{1}{75}$
(iii) 8.1 and 2.5
(iv) (a – b) and (a³ – a²b), a> b
Solution:
(i) Let x be the mean proportion of 5 and 80 ,
then 5 : x : : x : 80
x² = 5 x 80
⇒ x = √5×80=√400= 20
x = 20
$\therefore x^{2}=\frac{1}{12} \times \frac{1}{75}=\frac{1}{900}$
$\therefore x=\sqrt{\frac{1}{900}}=\frac{1}{30}$
Hence the mean proportion $=\frac{1}{30}$
(iii) Let the x be the mean proportion of 8.1 and 2.5
∴ 8.1: x:: x: 2.5
$\therefore \quad x^{2}=8 \cdot 1 \times 2 \cdot 5$
$\therefore \quad x=\sqrt{8 \cdot 1 \times 2 \cdot 5}=\sqrt{20 \cdot 25}=4 \cdot 5$
Hence mean proportion =4.5
(iv) Let x be the mean proportion to $(a-b)$ and $\left(a^{3}-a^{2} b\right), a>b$
then $(a-b): x:: x:\left(a^{3}-a^{2} b\right)$
$x^{2}=(a-b)\left(a^{3}-a^{2} b\right)$
$=(a-b) a^{2}(a-b)=a^{2}(a-b)^{2}$
∴ x=a(a-b)
Hence the mean proportion=a(a-b)
Question 5
If a, 12, 16 and b are in continued proportion find a and b.
Sol :
∵ a, 12, 16, b are in continued proportion, then
Question 6
Question 7
Question 8
$\therefore \quad x=\frac{-21}{-7}=3$
Hence x=3
Question 9
If 2x – 1, 5x – 6, 6x + 2 and 15x – 9 are in proportion, find the value of x.
Sol :
∵ 2x – 1, 5x – 6, 6x + 2 and 15x – 9 are in proportion.
then (2x – 1) (15x – 9) = (5x – 6) (6x + 2)
Question 10
What number must be added to each of the numbers 16, 26 and 40 so that the resulting numbers may be in continued proportion?
Sol :
Let x be added to each number then
16 + x, 26 + x and 40 + x
are in continued proportion.
Cross Multiplying,
(16+x)(40+x)=(26+x)(26+x)
$\Rightarrow 640+16 x+40 x+x^{2}=676+26 x+26 x+x^{2}$
$\Rightarrow 640+56 x+x^{2}=676+52 x+x^{2}$
$\Rightarrow 56 x+x^{2}-52 x-x^{2}=676-640$
⇒4x=36
$\Rightarrow x=\frac{36}{4}=9$
∴9 is to be added.
Question 11
Find two numbers such that the mean proportional between them is 28 and the third proportional to them is 224.
Sol :
Let the two numbers are a and b.
∵ 28 is the mean proportional
∵ a : 28 : : 28 : b
Question 12
If b is the mean proportional between a and c, prove that a, c, a² + b², and b² + c² are proportional.
Sol :
∵ b is the mean proportional between a and c, then,
b² = a × c ⇒ b² = ac …(i)
Question 13
If b is the mean proportional between a and c, prove that (ab + bc) is the mean proportional between (a² + b²) and (b² + c²).
Sol :
b is the mean proportional between a and c then
b² = ac …(i)
Now if (ab + bc) is the mean proportional
Question 14
If y is mean proportional between x and z, prove that
xyz (x + y + z)³ = (xy + yz + zx)³.
Sol :
∵ y is the mean proportional between
x and z, then
y² = xz …(i)
$=y^{3}(x+y+z)^{3}$
$=[y(x+y+z)]^{3}$
$=\left[x y+y^{2}+y z\right]^{3}$
$=(x y+y z+z x)^{3}$ (from i)
=R.H.S
Question 15
If a + c = mb and $\frac{1}{b}+\frac{1}{d}=\frac{m}{c}$ , prove that a, b, c and d are in proportion.
Sol :
a + c = mb and $\frac{1}{b}+\frac{1}{d}=\frac{m}{c}$
a + c = mb
and $\frac{1}{b}+\frac{1}{d}=\frac{m}{c}$
$\frac{c}{b}+\frac{c}{d}=m$ (Multiplying by c)...(ii)
From (i) and (ii)
$\frac{a}{b}+\frac{c}{b}=\frac{c}{b}+\frac{c}{d} \Rightarrow \frac{a}{b}=\frac{c}{d}$
Hence, a, b, c and d are proportional.
Question 16
If $\frac{x}{a}=\frac{y}{b}=\frac{z}{c},$ prove that
(i) $\frac{x^{3}}{a^{2}}+\frac{y^{3}}{b^{2}}+\frac{z^{3}}{c^{2}}=\frac{(x+y+z)^{3}}{(a+b+c)^{2}}$
(ii) $\left[\frac{a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}}{a^{3} x+b^{3} y+c^{3} z}\right]^{3}=\frac{x y z}{a b c}$
(iii) $\frac{a x-b y}{(a+b)(x-y)}+\frac{b y-c z}{(b+c)(y-z)}+\frac{c z-a x}{(c+a)(z-x)}=3$
Sol :
$\frac{x}{a}=\frac{y}{b}=\frac{z}{c}$
$\therefore x=a k, y=b k, z=c k$
(i) L.H.S. $=\frac{x^{3}}{a^{2}}+\frac{y^{3}}{b^{2}}+\frac{z^{3}}{c^{2}}$
$=\frac{a^{3} k^{3}}{a^{2}}+\frac{b^{3} k^{3}}{b^{2}}+\frac{c^{3} k^{3}}{c^{2}}$
$=a k^{3}+b k^{3}+c k^{3}=k^{3}(a+b+c)$
R.H.S. $=\frac{(x+y+z)^{3}}{(a+b+c)^{2}}$
$=\frac{(a k+b k+c k)^{3}}{(a+b+c)^{2}}=\frac{k^{3}(a+b+c)^{3}}{(a+b+c)^{2}}$
$=k^{3}(a+b+c)$
Hence L.H.S. = R.H.S.
(ii) L.H.S $=\left[\frac{a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}}{a^{3} x+b^{3} y+c^{3} z}\right]^{3}$
$=\left[\frac{a^{2} \cdot a^{2} k^{2}+b^{2} \cdot b^{2} k^{2}+c^{2} \cdot c^{2} k^{2}}{a^{3} \cdot a \cdot k+b^{3} \cdot b k+c^{3} \cdot c k}\right]^{3}$
$=\left[\frac{a^{4} k^{2}+b^{4} k^{2}+c^{4} k^{2}}{a^{4} k+b^{4} k+c^{4} k}\right]^{3}$
$=\left[\frac{k^{2}\left(a^{4}+b^{4}+c^{4}\right)}{k\left(a^{4}+b^{4}+c^{4}\right)}\right]^{3}=k^{3}$
$\mathrm{R.H.S}=\frac{x y z}{a b c}=\frac{a k \cdot b k \cdot c k}{a b c}=k^{3}$
∴L.H.S=R.H.S
(iii) L.H.S $\frac{a x-b y}{(a+b)(x-y)}+\frac{b y-c z}{(b+c)(y-z)}+\frac{c z-a x}{(c+a)(z-x)}$
$=\frac{a \cdot a k-b \cdot b k}{(a+b)(a k-b k)}+\frac{b \cdot b k-c \cdot c k}{(b+c)(b k-c k)}+\frac{c . c k-a . a k}{(c+a)(c k-a k)}$
$=\frac{a^{2} k-b^{2} k}{(a+b) k(a-b)}+\frac{b^{2} k-c^{2} k}{(b+c) k(b-c)}+\frac{c^{2} k-a^{2} k}{(c+a) k(c-a)}$
$=\frac{k\left(a^{2}-b^{2}\right)}{k\left(a^{2}-b^{2}\right)}+\frac{k\left(b^{2}-c^{2}\right)}{k\left(b^{2}-c^{2}\right)}+\frac{k\left(c^{2}-a^{2}\right)}{k\left(c^{2}-a^{2}\right)}$
=1+1+1=3=R.H.S
Question 17
If $\frac{a}{b}=\frac{c}{d}=\frac{e}{t}$ prove that
(i) (b² + d² + f²) (a² + c² + e²) = (ab + cd + ef)²
(iii) $\frac{a^{2}}{b^{2}}+\frac{c^{2}}{d^{2}}+\frac{e^{2}}{f^{2}}=\frac{a c}{b d}+\frac{c e}{d f}+\frac{a e}{d f}$
(iv) $b d f\left[\frac{a+b}{b}+\frac{c+d}{d}+\frac{c+f}{f}\right]^{3}$=27(a+b)(c+d)(e+f)
Sol :
$\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=k(\mathrm{say})$
∴ a = bk, c = dk, e =fk
Question 18
$=\frac{k^{2}}{a^{2}} \times \frac{b c}{k^{2}}+\frac{k^{2}}{b^{2}} \times \frac{c a}{k^{2}}+\frac{k^{2}}{c^{2}} \times \frac{a b}{k^{2}}$
$=\frac{b c}{a^{2}}+\frac{c a}{b^{2}}+\frac{a b}{c^{2}}=\mathrm{R} \cdot \mathrm{H.S}$
Question 19
If a, b, c and d are in proportion, prove that:
(i) (5a + 7b) (2c – 3d) = (5c + 7d) (2a – 3b)
(ii) (ma + nb) : b = (mc + nd) : d
(iii) (a4 + c4) : (b4 + d4) = a2 c2 : b2 d2.
(viii) abcd $\left[\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}}\right.=a^{2}+b^{2}+c^{2}+d^{2}$
Sol :
∵ a, b, c, d are in proportion
a=bk, c=dk
(i) L.H.S. $=(5 a+7 b)(2 c-3 d)$
$=(5 \cdot b k+7 b)(2 d k-3 d)$
$=k(5 b+7 b) k(2 d-3 d)$
$=k^{2}(12 b) \times(-d)=-12 b d k^{2}$
$\mathrm{R} . \mathrm{H.S.}=(5 c+7 d)(2 a-3 b)$
$=(5 d k+7 d)(2 k \cdot b-3 b)$
$=k(5 d+7 d) k(2 b-3 b)$
$=k^{2}(12 d)(-b)=-12 k^{2} b d=-12 b d k^{2}$
$\therefore \mathrm{L} \cdot \mathrm{H.S}=\mathrm{R} \cdot \mathrm{H.S}$
(ii) $(m a+n b): b=(m c+n d)^{*}: d$
$\Rightarrow \frac{m a+n b}{b}=\frac{m c+n d}{d}$
L.H.S. $=\frac{m b k+n b}{b}=\frac{b(m k+n)}{b}$
=m k+n
$\mathrm{R} . \mathrm{H.S.}=\frac{m c+n d}{d}=\frac{m d k+n d}{d}$
$=\frac{d(m k+n)}{d}=m k+n$
$\therefore \mathrm{L} \cdot \mathrm{H.S}=\mathrm{R} . \mathrm{H.S}$
(iii) $\left(a^{4}+c^{4}\right):\left(b^{4}+d^{4}\right)=a^{2} c^{2}: b^{2} d^{2}$
$\frac{a^{4}+c^{4}}{b^{4}+d^{4}}=\frac{a^{2} c^{2}}{b^{2} d^{2}}$
L. H.S. $=\frac{a^{4}+c^{4}}{b^{4}+d^{4}}=\frac{b^{4} k^{4}+d^{4} k^{4}}{b^{4}+d^{4}}$
$=\frac{k^{4}\left(b^{4}+d^{4}\right)}{\left(b^{4}+d^{4}\right)}=k^{4}$
R.H.S. $=\frac{a^{2} c^{2}}{b^{2} d^{2}}=\frac{k^{2} b^{2} \cdot k^{2} d^{2}}{b^{2} \cdot d^{2}}=k^{4}$
Hence L.H.S.=R.H.S.
(iv) $\quad$ L.H.S $=\frac{a^{2}+a b}{c^{2}+c d}=\frac{k^{2} b^{2}+b k \cdot b}{k^{2} d^{2}+d k \cdot d}$
$=\frac{k b^{2}(k+1)}{d^{2} k(k+1)}=\frac{b^{2}}{d^{2}}$
$\mathrm{R.H.S}=\frac{b^{2}-2 a b}{d^{2}-2 c d}=\frac{b^{2}-2 \cdot b k b}{d^{2}-2 d k d}$
$=\frac{b^{2}(1-2 k)}{d^{2}(1-2 k)}=\frac{b^{2}}{d^{2}}$
$\therefore \mathrm{L} \cdot \mathrm{H.S}=\mathrm{R} \cdot \mathrm{H.S}$
(v) L.H.S. $=\frac{(a+c)^{3}}{(b+d)^{3}}=\frac{(b k+d k)^{3}}{(b+d)^{3}}$
$=\frac{k^{3}(b+d)^{3}}{(b+d)^{3}}=k^{3}$
R.H.S. $=\frac{a(a-c)^{2}}{b(b-d)^{2}}=\frac{b k(b k-d k)^{2}}{b(b-d)^{2}}$
$=\frac{b k \cdot k^{2}(b-d)^{2}}{b(b-d)^{2}}=k^{3}$
$\therefore \mathrm{L} . \mathrm{H.S}=\mathrm{R} . \mathrm{H.S}$
$(v i) \quad L . H . S=\frac{a^{2}+a b+b^{2}}{a^{2}-a b+b^{2}}$
$=\frac{b^{2} k^{2}+b k \cdot b+b^{2}}{b^{2} k^{2}-b k \cdot b+b^{2}}$
$=\frac{b^{2}\left(k^{2}+k+1\right)}{b^{2}\left(k^{2}-k+1\right)}=\frac{k^{2}+k+1}{k^{2}-k+1}$
$\mathrm{R} \cdot \mathrm{H.S}=\frac{c^{2}+c d+d^{2}}{c^{2}-c d+d^{2}}$
$=\frac{d^{2} k^{2}+d k d+d^{2}}{d^{2} k^{2}-d k \cdot d+d^{2}}$
$=\frac{d^{2}\left(k^{2}+k+1\right)}{d^{2}\left(k^{2}-k+1\right)}=\frac{k^{2}+k+1}{k^{2}-k+1}$
$\therefore \mathrm{L} \cdot \mathrm{H.S}=\mathrm{R} \cdot \mathrm{H.S}$
$(vi) L . H . S=\frac{a^{2}+a b+b^{2}}{a^{2}-a b+b^{2}}$
$=\frac{b^{2} k^{2}+b k \cdot b+b^{2}}{b^{2} k^{2}-b k \cdot b+b^{2}}$
$=\frac{b^{2}\left(k^{2}+k+1\right)}{b^{2}\left(k^{2}-k+1\right)}=\frac{k^{2}+k+1}{k^{2}-k+1}$
$\mathrm{R} \cdot \mathrm{H.S}=\frac{c^{2}+c d+d^{2}}{c^{2}-c d+d^{2}}$
$=\frac{d^{2} k^{2}+d k d+d^{2}}{d^{2} k^{2}-d k \cdot d+d^{2}}$
$=\frac{d^{2}\left(k^{2}+k+1\right)}{d^{2}\left(k^{2}-k+1\right)}=\frac{k^{2}+k+1}{k^{2}-k+1}$
$\therefore \mathrm{L} \cdot \mathrm{H.S}=\mathrm{R} \cdot \mathrm{H.S}$
(viii) $\mathrm{L.H.S.}=a b c d\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}}\right)$
(viii) L.H.S. $=a b c d\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}}\right)$
$=b k$.b. dk.d $\left[\frac{1}{b^{2} k^{2}}+\frac{1}{b^{2}}+\frac{1}{d^{2} k^{2}}+\frac{1}{d^{2}}\right]$
$=k^{2} b^{2} d^{2}\left[\frac{d^{2}+d^{2} k^{2}+b^{2}+b^{2} k^{2}}{b^{2} d^{2} k^{2}}\right]$
$=d^{2}\left(1+k^{2}\right)+b^{2}\left(1+k^{2}\right)=\left(1+k^{2}\right)\left(b^{2}+d^{2}\right)$
R.H.S $=a^{2}+b^{2}+c^{2}+d^{2}$
$=b^{2} k^{2}+b^{2}+d^{2} k^{2}+d^{2}$
$=b^{2}\left(k^{2}+1\right)+d^{2}\left(k^{2}+1\right)=\left(k^{2}+1\right)\left(b^{2}+d^{2}\right)$
$\therefore$ L.H.S = R.H.S.
Question 20
If x, y, z are in continued proportion, prove that: $\frac{(x+y)^{2}}{(y+z)^{2}}=\frac{x}{z}$. (2010)
Then y=k z
$x=y k=k z \times k=k^{2} z$
Now L.H.S. $=\frac{(x+y)^{2}}{(y+z)^{2}}$
$=\frac{\left(k^{2} z+k z\right)^{2}}{(k z+z)^{2}}=\frac{\{k z(k+1)\}^{2}}{\{z(k+1)\}^{2}}$
$=\frac{k^{2} z^{2}(k+1)^{2}}{z^{2}(k+1)^{2}}=k^{2}$
$\mathrm{R.H.S.}=\frac{x}{z}=\frac{k^{2} z}{z}=k^{3}$
∴L.H.S=R.H.S
Question 21
If a, b, c are in continued proportion, prove that:
Sol :
Given a, b, c are in continued proportion
⇒a=bk and b=ck...(i)
⇒a=(ck)k$=c k^{2}$ [using (i)]
b=ck
$\mathrm{L.H.S.}=\frac{a}{c}=\frac{c k^{2}}{c}=k^{2}$
R.H.S. $=\frac{p\left(c k^{2}\right)^{2}+q\left(c k^{2}\right) c k+r(c k)^{2}}{p(c k)^{2}+q(c k) c+r c^{2}}$
$=\frac{p c^{2} k^{4}+q c^{2} k^{3}+r c^{2} k^{2}}{p c^{2} k^{2}+q c^{2} k+r c^{2}}$
$=\frac{c^{2} k^{2}}{c^{2}}\left[\frac{p k^{2}+q k+r}{p k^{2}+q k+r}\right]=k^{2}$...(iii)
From (ii) and (iii) L.H.S=R.H.S
∴b=ck, a=bk=ckk$=c k^{2}$
(i) L.H.S
$=\frac{a+b}{b+c}=\frac{c k^{2}+c k}{c k+c}=\frac{c k(k+1)}{c(k+1)}=k$
$\mathrm{R} . \mathrm{H.S}=\frac{a^{2}(b-c)}{b^{2}(a-b)}$
$=\frac{\left(c k^{2}\right)^{2}(c k-c)}{(c k)^{2}\left(c k^{2}-c k\right)}$
$=\frac{c^{2} k^{4} c(k-1)}{c^{2} k^{2} c k(k-1)}$
Question 22
If a, b, c are in continued proportion, prove that:
Sol :
As a, b, c, are in continued proportion
$=\frac{c^{3} k^{4}(k-1)}{c^{3} k^{3}(k-1)}=k$
∴L.H.S=R.H.S
(ii) L.H.S. $=\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}$
$=\frac{1}{\left(c k^{2}\right)^{3}}+\frac{1}{(c k)^{3}}+\frac{1}{c^{3}}$
$=\frac{1}{c^{3} k^{6}}+\frac{1}{c^{3} k^{3}}+\frac{1}{c^{3}}$
$=\frac{1}{c^{3}}\left[\frac{1}{k^{6}}+\frac{1}{k^{3}}+\frac{1}{1}\right]$
R.H.S. $=\frac{a}{b^{2} c^{2}}+\frac{b}{c^{2} a^{2}}+\frac{c}{a^{2} b^{2}}$
$=\frac{c k^{2}}{(c k)^{2} c^{2}}+\frac{c k}{c^{2}\left(c k^{2}\right)^{2}}+\frac{c}{\left(c k^{2}\right)^{2}(c k)^{2}}$
$=\frac{c k^{2}}{c^{4} k^{2}}+\frac{c k}{c^{4} k^{4}}+\frac{c}{c^{4} k^{6}}$
$=\frac{1}{c^{3}}+\frac{1}{c^{3} k^{3}}+\frac{1}{c^{3} k^{6}}$
$=\frac{1}{c^{3}}\left[1+\frac{1}{k^{3}}+\frac{1}{k^{6}}\right]$
$=\frac{1}{c^{3}}\left[\frac{1}{k^{6}}+\frac{1}{k^{3}}+1\right]$
∴ L.H.S = R.H.S.
(iii) $a: c=\left(a^{2}+b^{2}\right):\left(b^{2}+c^{2}\right)$
$\Rightarrow \frac{a}{c}=\frac{a^{2}+b^{2}}{b^{2}+c^{2}}$
L.H.S. $\frac{a}{c}=\frac{c k^{2}}{c}=k^{2}$
R.H.S. $=\frac{\left(c k^{2}\right)^{2}+(c k)^{2}}{(c k)^{2}+c^{2}}$
$=\frac{c^{2} k^{4}+c^{2} k^{2}}{c^{2} k^{2}+c^{2}}$
$=\frac{c^{2} k^{2}\left(k^{2}+1\right)}{c^{2}\left(k^{2}+1\right)}=k^{2}$
∴ L.H.S = R.H.S.
(iv) L.H.S. $=a^{2} b^{2} c^{2}\left(a^{-4}+b^{-4}+c^{-4}\right)$
$=a^{2} b^{2} c^{2}\left[\frac{1}{a^{4}}+\frac{1}{b^{4}}+\frac{1}{c^{4}}\right]$
$=\frac{a^{2} b^{2} c^{2}}{a^{4}}+\frac{a^{2} b^{2} c^{2}}{b^{4}}+\frac{a^{2} b^{2} c^{2}}{c^{4}}$
$=\frac{b^{2} c^{2}}{a^{2}}+\frac{c^{2} a^{2}}{b^{2}}+\frac{a^{2} b^{2}}{c^{2}}$
$=\frac{(c k)^{2} \cdot c^{2}}{\left(c k^{2}\right)^{2}}+\frac{c^{2}\left(c k^{2}\right)^{2}}{(c k)^{2}}+\frac{\left(c k^{2}\right)^{2}(c k)^{2}}{c^{2}}$
$=\frac{c^{2} k^{2} \cdot c^{2}}{c^{2} k^{4}}+\frac{c^{2} \cdot c^{2} k^{4}}{c^{2} k^{2}}+\frac{c^{2} k^{4} \cdot c^{2} k^{2}}{c^{2}}$
$=\frac{c^{2}}{k^{2}}+\frac{c^{2} k^{2}}{1}+\frac{c^{2} k^{6}}{1}$
$=c^{2}\left[\frac{1}{k^{2}}+k^{2}+k^{6}\right]$
$=\frac{c^{2}}{k^{2}}\left[1+k^{4}+k^{8}\right]$
R.H.S. $=b^{-2}\left[a^{4}+b^{4}+c^{4}\right]$
$=\frac{1}{b^{2}}\left[a^{4}+b^{4}+c^{4}\right]$
$=\frac{1}{(c k)^{2}}\left[\left(c k^{2}\right)^{4}+(c k)^{4}+c^{4}\right]$
$=\frac{1}{c^{2} k^{2}}\left[c^{4} k^{8}+c^{4} k^{4}+c^{4}\right]$
$=\frac{c^{4}}{c^{2} k^{2}}\left[k^{8}+k^{4}+1\right]$
$=\frac{c^{2}}{k^{2}}\left[1+k^{4}+k^{8}\right]$
∴ L.H.S = R.H.S.
(v) L.H.S. $=a b c(a+b+c)^{3}$
$=c k^{2}$.ck.c $\left[c k^{2}+c k+c\right]^{3}$
$=c^{3} k^{3}\left\{c\left(k^{2}+k+1\right)\right]^{3}$
$=c^{3} k^{3} \cdot c^{3} \cdot\left(k^{2}+k+1\right)^{3}=c^{6} k^{3}\left(k^{2}+k+1\right)^{3}$
$\mathrm{R} . \mathrm{H.S.}=(a b+b c+c a)^{3}$
$=\left(c k^{2} \cdot c k+c k \cdot c+c \cdot c k^{2}\right)^{3}$
$=\left(c^{2} k^{3}+c^{2} k+c^{2} k^{2}\right)^{3}=\left(c^{2} k^{3}+c^{2} k^{2}+c^{2} k\right)^{3}$
$=\left[c^{2} k\left(k^{2}+k+1\right)\right]^{3}=c^{6} k^{3}\left(k^{2}+k+1\right)^{3}$
∴ L.H.S = R.H.S.
(vi) L.H.S. $=(a+b+c)(a-b+c)$
$=\left(c k^{2}+c k+c\right)\left(c k^{2}-c k+c\right)$
$=c\left(k^{2}+k+1\right) c\left(k^{2}-k+1\right)$
$=c^{2}\left(k^{2}+k+1\right)\left(k^{2}-k+1\right)$
$=c^{2}\left(k^{4}+k^{2}+1\right)$
R.H.S. $=a^{2}+b^{2}+c^{2}$
$=\left(c k^{2}\right)^{2}+(c k)^{2}+(c)^{2}$
$=c^{2} k^{4}+c^{2} k^{2}+c^{2}=c^{2}\left(k^{4}+k^{2}+1\right)$
∴ L.H.S = R.H.S.
Question 23
If a, b, c, d are in continued proportion, prove that:
Sol :
a, b, c, d are in continued proportion
$\therefore c=d k, b=c k=d k . k=d k^{2}$
$a=b k=d k^{2} \cdot k=d k^{3}$
(i) L.H.S. $=\frac{a^{3}+b^{3}+c^{3}}{b^{3}+c^{3}+d^{3}}$
$=\frac{\left(d k^{3}\right)^{3}+\left(d k^{2}\right)^{3}+(d k)^{3}}{\left(d k^{2}\right)^{3}+(d k)^{3}+d^{3}}$
$=\frac{d^{3} k^{9}+d^{3} k^{6}+d^{3} k^{3}}{d^{3} k^{6}+d^{3} k^{3}+d^{3}}$
$=\frac{d^{3} k^{3}\left(k^{6}+k^{3}+1\right)}{d^{3}\left(k^{6}+k^{3}+1\right)}=k^{3}$
$\mathrm{R.H.S.}=\frac{a}{d}=\frac{d k^{3}}{d}=k^{3}$
∴ L.H.S = R.H.S.
(ii) L.H.S. $=\left(a^{2}-b^{2}\right)\left(c^{2}-d^{2}\right)$
$=\left[\left(d k^{3}\right)^{2}-\left(d k^{2}\right)^{2}\right]\left[(d k)^{2}-d^{2}\right]$
$=\left(d^{2} k^{6}-d^{2} k^{4}\right)\left(d^{2} k^{2}-d^{2}\right)$
$=d^{2} k^{4}\left(k^{2}-1\right) d^{2}\left(k^{2}-1\right)=d^{4} k^{4}\left(k^{2}-1\right)^{2}$
$\mathrm{R} \cdot \mathrm{H} . \mathrm{S} .=\left(b^{2}-c^{2}\right)^{2}=\left[\left(d k^{2}\right)^{2}-(d k)^{2}\right]^{2}$
$=\left[d^{2} k^{4}-d^{2} k^{2}\right]^{2}=\left[d^{2} k^{2}\left(k^{2}-1\right)\right]^{2}$
$=d^{4} k^{4}\left(k^{2}-1\right)^{2}$
∴ L.H.S = R.H.S.
(iii) L.H.S. $=(a+d)(b+c)-(a+c)(b+d)$
$=\left(d k^{3}+d\right)\left(d k^{2}+d k\right)-\left(d k^{3}+d k\right)\left(d k^{2}+d\right)$
$=d\left(k^{3}+1\right) d k(k+1)-d k\left(k^{2}+1\right) d\left(k^{2}+1\right)$
$=d^{2} k(k+1)\left(k^{3}+1\right)-d^{2} k\left(k^{2}+1\right)\left(k^{2}+1\right)$
$=d^{2} k\left[k^{4}+k^{3}+k+1-k^{4}-2 k^{2}-1\right]$
$=d^{2} k\left[k^{3}-2 k^{2}+k\right]=d^{2} k^{2}\left[k^{2}-2 k+1\right]$
$=d^{2} k^{2}(k-1)^{2}$
$\mathrm{R} . \mathrm{H.S.}=(b-c)^{2}=\left(d k^{2}-d k\right)^{2}=d^{2} k^{2}(k-1)^{2}$
∴ L.H.S = R.H.S.
(iv) a : d= triplicate ratio of (a-b) : (b-c)
$=(a-b)^{3}:(b-c)^{3}$
L.H.S. $=a: d=\frac{a}{d}=\frac{d k^{3}}{d}=k^{3}$
$\mathrm{R} . \mathrm{H.S.}=\frac{(a-b)^{3}}{(b-c)^{3}}$
$=\frac{\left(d k^{3}-d k^{2}\right)^{3}}{\left(d k^{2}-d k\right)^{3}}=\frac{d^{3} k^{6}(k-1)^{3}}{d^{3} k^{3}(k-1)^{3}}=k^{3}$
∴ L.H.S = R.H.S.
(v) L.H.S=
$\left(\frac{a-b}{c}+\frac{a-c}{b}\right)^{2}-\left(\frac{d-b}{c}+\frac{d-c}{b}\right)^{2}$
$=\left(\frac{d k^{3}-d k^{2}}{d k}+\frac{d k^{3}-d k}{d k^{2}}\right)^{2}-\cdot\left(\frac{d-d k^{2}}{d k}+\frac{d-d k}{d k^{2}}\right)^{2}$
$=\left(\frac{d k^{2}(k-1)}{d k}+\frac{d k\left(k^{2}-1\right)}{d k^{2}}\right)^{2}-\left(\frac{d\left(1-k^{2}\right)}{d k}+\frac{d(1-k)}{d k^{2}}\right)^{2}$
$=\left(k(k-1)+\frac{k^{2}-1}{k}\right)^{2}-\left(\frac{1-k^{2}}{k}+\frac{1-k}{k^{2}}\right)^{2}$
$=\left(\frac{k^{2}(k-1)+\left(k^{2}-1\right)}{k}\right)^{2}-\left(\frac{k\left(1-k^{2}\right)+1-k}{k^{2}}\right)^{2}$
$=\left(\frac{k^{3}-k^{2}+k^{2}-1}{k}\right)^{2}-\left(\frac{k-k^{3}+1-k}{k^{2}}\right)^{2}$
$=\frac{\left(k^{3}-1\right)^{2}}{k^{2}}-\frac{\left(-k^{3}+1\right)^{2}}{k^{4}}$
$=\frac{\left(k^{3}-1\right)^{2}}{k^{2}}-\frac{\left(1-k^{3}\right)^{2}}{k^{4}}$
$=\left(\frac{\left(k^{3}-1\right)}{k^{2}}\right)^{2}\left(1-\frac{1}{k^{2}}\right)=\frac{\left(k^{3}-1\right)^{2}\left(k^{2}-1\right)}{k^{4}}$
$=\frac{\left(k^{3}-1\right)^{2}\left(k^{2}-1\right)}{k^{4}}$
R.H.S. $=(a-d)^{2}\left(\frac{1}{c^{2}}-\frac{1}{b^{2}}\right)$
$=\left(d k^{3}-d\right)^{2}\left(\frac{1}{d^{2} k^{2}}-\frac{1}{d^{2} k^{4}}\right)$
$=d^{2}\left(k^{3}-1\right)^{2}\left(\frac{k^{2}-1}{d^{2} k^{4}}\right)=\frac{\left(k^{3}-1\right)^{2}\left(k^{2}-1\right)}{k^{4}}$
∴ L.H.S = R.H.S.
Comments
Post a Comment