ML Aggarwal Solution Class 10 Chapter 7 Ratio and Proportion Exercise 7.2
Exercise 7.2
Question 1
Find the value of x in the following proportions :
(i) 10 : 35 = x : 42
(ii) 3 : x = 24 : 2
(iii) 2.5 : 1.5 = x : 3
(iv) x : 50 :: 3 : 2
Sol :
(i) 10 : 35 = x : 42
⇒ 35×x = 10 × 42
(ii) 3: x=24: 2
\Rightarrow x \times 24=3 \times 2
\therefore x=\frac{3 \times 2}{24}=\frac{1}{4}
(iii) 2 \cdot 5: 1 \cdot 5=x: 3
\Rightarrow 1 \cdot 5 \times x=2 \cdot 5 \times 3
x=\frac{2 \cdot 5 \times 3}{1 \cdot 5}=5 \cdot 0
(iv) x: 50:: 3: 2
\Rightarrow x \times 2=50 \times 3
x=\frac{50 \times 3}{2}=75
Question 2
Find the fourth proportional to
(i) 3, 12, 15
\Rightarrow x=\frac{1}{4} \times \frac{1}{5} \times \frac{3}{1}=\frac{3}{20}
(iii) Let fourth proportional to
1 \cdot 5,2 \cdot 5,4 \cdot 5 be x
then 1 \cdot 5: 2 \cdot 5:: 4 \cdot 5: x
\therefore 1 \cdot 5 \times x=2 \cdot 5 \times 4 \cdot 5
x=\frac{2 \cdot 5 \times 4 \cdot 5}{1 \cdot 5}=7 \cdot 5
(iv) Let fourth proportional to 9.6kg, 7.2 kg, 28.8 kg be x
then 9.6 : 7.2 :: 28.8 : x
\Rightarrow \quad 9 \cdot 6 \times x=7 \cdot 2 \times 28 \cdot 8
x=\frac{7 \cdot 2 \times 28 \cdot 8}{9 \cdot 6}=21 \cdot 6
Question 3
Find the third proportional to
(i) 5, 10
(ii) 0.24, 0.6
(iii) Rs. 3, Rs. 12
Sol :
(i) Let x be the third proportional to 5, 10,
then 5 : 10 :: 10 : x
∴Third proportional =20
(ii) Let x be the third proportional to 0.24, 0.6
then 0.24 : 0.6 :: 0.6 : x
\therefore 0 \cdot 24 \times x=0 \cdot 6 \times 0 \cdot 6
x=\frac{0 \cdot 6 \times 0 \cdot 6}{0 \cdot 24}=1 \cdot 5
∴ Third proportional =1.5
(iii) Let x be the third proportional to Rs. 3 and Rs. 12 then Rs. 3: Rs. 12: Rs. 12: x
\therefore x=\frac{12 \times 12}{3}=48
\therefore Third proportional Rs 48
(iv) Let x be the third proportional to 5 \frac{1}{4} and 7
then 5 \frac{1}{4}: 7:: 7: x
\Rightarrow \frac{21}{4}: 7:: 7: x
\therefore \frac{21}{4} \times x=7 \times 7
x=\frac{7 \times 7 \times 4}{21}
=\frac{28}{3}=9 \frac{1}{3}
∴ Third proportional =9 \frac{1}{3} Ans.
Question 4
Find the mean proportion of:
(i) 5 and 80
(ii) \frac{1}{12} and \frac{1}{75}
(iii) 8.1 and 2.5
(iv) (a – b) and (a³ – a²b), a> b
Solution:
(i) Let x be the mean proportion of 5 and 80 ,
then 5 : x : : x : 80
x² = 5 x 80
⇒ x = √5×80=√400= 20
x = 20
\therefore x^{2}=\frac{1}{12} \times \frac{1}{75}=\frac{1}{900}
\therefore x=\sqrt{\frac{1}{900}}=\frac{1}{30}
Hence the mean proportion =\frac{1}{30}
(iii) Let the x be the mean proportion of 8.1 and 2.5
∴ 8.1: x:: x: 2.5
\therefore \quad x^{2}=8 \cdot 1 \times 2 \cdot 5
\therefore \quad x=\sqrt{8 \cdot 1 \times 2 \cdot 5}=\sqrt{20 \cdot 25}=4 \cdot 5
Hence mean proportion =4.5
(iv) Let x be the mean proportion to (a-b) and \left(a^{3}-a^{2} b\right), a>b
then (a-b): x:: x:\left(a^{3}-a^{2} b\right)
x^{2}=(a-b)\left(a^{3}-a^{2} b\right)
=(a-b) a^{2}(a-b)=a^{2}(a-b)^{2}
∴ x=a(a-b)
Hence the mean proportion=a(a-b)
Question 5
If a, 12, 16 and b are in continued proportion find a and b.
Sol :
∵ a, 12, 16, b are in continued proportion, then
Question 6
Question 7
Question 8
\therefore \quad x=\frac{-21}{-7}=3
Hence x=3
Question 9
If 2x – 1, 5x – 6, 6x + 2 and 15x – 9 are in proportion, find the value of x.
Sol :
∵ 2x – 1, 5x – 6, 6x + 2 and 15x – 9 are in proportion.
then (2x – 1) (15x – 9) = (5x – 6) (6x + 2)
Question 10
What number must be added to each of the numbers 16, 26 and 40 so that the resulting numbers may be in continued proportion?
Sol :
Let x be added to each number then
16 + x, 26 + x and 40 + x
are in continued proportion.
Cross Multiplying,
(16+x)(40+x)=(26+x)(26+x)
\Rightarrow 640+16 x+40 x+x^{2}=676+26 x+26 x+x^{2}
\Rightarrow 640+56 x+x^{2}=676+52 x+x^{2}
\Rightarrow 56 x+x^{2}-52 x-x^{2}=676-640
⇒4x=36
\Rightarrow x=\frac{36}{4}=9
∴9 is to be added.
Question 11
Find two numbers such that the mean proportional between them is 28 and the third proportional to them is 224.
Sol :
Let the two numbers are a and b.
∵ 28 is the mean proportional
∵ a : 28 : : 28 : b
Question 12
If b is the mean proportional between a and c, prove that a, c, a² + b², and b² + c² are proportional.
Sol :
∵ b is the mean proportional between a and c, then,
b² = a × c ⇒ b² = ac …(i)
Question 13
If b is the mean proportional between a and c, prove that (ab + bc) is the mean proportional between (a² + b²) and (b² + c²).
Sol :
b is the mean proportional between a and c then
b² = ac …(i)
Now if (ab + bc) is the mean proportional
Question 14
If y is mean proportional between x and z, prove that
xyz (x + y + z)³ = (xy + yz + zx)³.
Sol :
∵ y is the mean proportional between
x and z, then
y² = xz …(i)
=y^{3}(x+y+z)^{3}
=[y(x+y+z)]^{3}
=\left[x y+y^{2}+y z\right]^{3}
=(x y+y z+z x)^{3} (from i)
=R.H.S
Question 15
If a + c = mb and \frac{1}{b}+\frac{1}{d}=\frac{m}{c} , prove that a, b, c and d are in proportion.
Sol :
a + c = mb and \frac{1}{b}+\frac{1}{d}=\frac{m}{c}
a + c = mb
and \frac{1}{b}+\frac{1}{d}=\frac{m}{c}
\frac{c}{b}+\frac{c}{d}=m (Multiplying by c)...(ii)
From (i) and (ii)
\frac{a}{b}+\frac{c}{b}=\frac{c}{b}+\frac{c}{d} \Rightarrow \frac{a}{b}=\frac{c}{d}
Hence, a, b, c and d are proportional.
Question 16
If \frac{x}{a}=\frac{y}{b}=\frac{z}{c}, prove that
(i) \frac{x^{3}}{a^{2}}+\frac{y^{3}}{b^{2}}+\frac{z^{3}}{c^{2}}=\frac{(x+y+z)^{3}}{(a+b+c)^{2}}
(ii) \left[\frac{a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}}{a^{3} x+b^{3} y+c^{3} z}\right]^{3}=\frac{x y z}{a b c}
(iii) \frac{a x-b y}{(a+b)(x-y)}+\frac{b y-c z}{(b+c)(y-z)}+\frac{c z-a x}{(c+a)(z-x)}=3
Sol :
\frac{x}{a}=\frac{y}{b}=\frac{z}{c}
\therefore x=a k, y=b k, z=c k
(i) L.H.S. =\frac{x^{3}}{a^{2}}+\frac{y^{3}}{b^{2}}+\frac{z^{3}}{c^{2}}
=\frac{a^{3} k^{3}}{a^{2}}+\frac{b^{3} k^{3}}{b^{2}}+\frac{c^{3} k^{3}}{c^{2}}
=a k^{3}+b k^{3}+c k^{3}=k^{3}(a+b+c)
R.H.S. =\frac{(x+y+z)^{3}}{(a+b+c)^{2}}
=\frac{(a k+b k+c k)^{3}}{(a+b+c)^{2}}=\frac{k^{3}(a+b+c)^{3}}{(a+b+c)^{2}}
=k^{3}(a+b+c)
Hence L.H.S. = R.H.S.
(ii) L.H.S =\left[\frac{a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}}{a^{3} x+b^{3} y+c^{3} z}\right]^{3}
=\left[\frac{a^{2} \cdot a^{2} k^{2}+b^{2} \cdot b^{2} k^{2}+c^{2} \cdot c^{2} k^{2}}{a^{3} \cdot a \cdot k+b^{3} \cdot b k+c^{3} \cdot c k}\right]^{3}
=\left[\frac{a^{4} k^{2}+b^{4} k^{2}+c^{4} k^{2}}{a^{4} k+b^{4} k+c^{4} k}\right]^{3}
=\left[\frac{k^{2}\left(a^{4}+b^{4}+c^{4}\right)}{k\left(a^{4}+b^{4}+c^{4}\right)}\right]^{3}=k^{3}
\mathrm{R.H.S}=\frac{x y z}{a b c}=\frac{a k \cdot b k \cdot c k}{a b c}=k^{3}
∴L.H.S=R.H.S
(iii) L.H.S \frac{a x-b y}{(a+b)(x-y)}+\frac{b y-c z}{(b+c)(y-z)}+\frac{c z-a x}{(c+a)(z-x)}
=\frac{a \cdot a k-b \cdot b k}{(a+b)(a k-b k)}+\frac{b \cdot b k-c \cdot c k}{(b+c)(b k-c k)}+\frac{c . c k-a . a k}{(c+a)(c k-a k)}
=\frac{a^{2} k-b^{2} k}{(a+b) k(a-b)}+\frac{b^{2} k-c^{2} k}{(b+c) k(b-c)}+\frac{c^{2} k-a^{2} k}{(c+a) k(c-a)}
=\frac{k\left(a^{2}-b^{2}\right)}{k\left(a^{2}-b^{2}\right)}+\frac{k\left(b^{2}-c^{2}\right)}{k\left(b^{2}-c^{2}\right)}+\frac{k\left(c^{2}-a^{2}\right)}{k\left(c^{2}-a^{2}\right)}
=1+1+1=3=R.H.S
Question 17
If \frac{a}{b}=\frac{c}{d}=\frac{e}{t} prove that
(i) (b² + d² + f²) (a² + c² + e²) = (ab + cd + ef)²
(iii) \frac{a^{2}}{b^{2}}+\frac{c^{2}}{d^{2}}+\frac{e^{2}}{f^{2}}=\frac{a c}{b d}+\frac{c e}{d f}+\frac{a e}{d f}
(iv) b d f\left[\frac{a+b}{b}+\frac{c+d}{d}+\frac{c+f}{f}\right]^{3}=27(a+b)(c+d)(e+f)
Sol :
\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=k(\mathrm{say})
∴ a = bk, c = dk, e =fk
Question 18
=\frac{k^{2}}{a^{2}} \times \frac{b c}{k^{2}}+\frac{k^{2}}{b^{2}} \times \frac{c a}{k^{2}}+\frac{k^{2}}{c^{2}} \times \frac{a b}{k^{2}}
=\frac{b c}{a^{2}}+\frac{c a}{b^{2}}+\frac{a b}{c^{2}}=\mathrm{R} \cdot \mathrm{H.S}
Question 19
If a, b, c and d are in proportion, prove that:
(i) (5a + 7b) (2c – 3d) = (5c + 7d) (2a – 3b)
(ii) (ma + nb) : b = (mc + nd) : d
(iii) (a4 + c4) : (b4 + d4) = a2 c2 : b2 d2.
(viii) abcd \left[\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}}\right.=a^{2}+b^{2}+c^{2}+d^{2}
Sol :
∵ a, b, c, d are in proportion
a=bk, c=dk
(i) L.H.S. =(5 a+7 b)(2 c-3 d)
=(5 \cdot b k+7 b)(2 d k-3 d)
=k(5 b+7 b) k(2 d-3 d)
=k^{2}(12 b) \times(-d)=-12 b d k^{2}
\mathrm{R} . \mathrm{H.S.}=(5 c+7 d)(2 a-3 b)
=(5 d k+7 d)(2 k \cdot b-3 b)
=k(5 d+7 d) k(2 b-3 b)
=k^{2}(12 d)(-b)=-12 k^{2} b d=-12 b d k^{2}
\therefore \mathrm{L} \cdot \mathrm{H.S}=\mathrm{R} \cdot \mathrm{H.S}
(ii) (m a+n b): b=(m c+n d)^{*}: d
\Rightarrow \frac{m a+n b}{b}=\frac{m c+n d}{d}
L.H.S. =\frac{m b k+n b}{b}=\frac{b(m k+n)}{b}
=m k+n
\mathrm{R} . \mathrm{H.S.}=\frac{m c+n d}{d}=\frac{m d k+n d}{d}
=\frac{d(m k+n)}{d}=m k+n
\therefore \mathrm{L} \cdot \mathrm{H.S}=\mathrm{R} . \mathrm{H.S}
(iii) \left(a^{4}+c^{4}\right):\left(b^{4}+d^{4}\right)=a^{2} c^{2}: b^{2} d^{2}
\frac{a^{4}+c^{4}}{b^{4}+d^{4}}=\frac{a^{2} c^{2}}{b^{2} d^{2}}
L. H.S. =\frac{a^{4}+c^{4}}{b^{4}+d^{4}}=\frac{b^{4} k^{4}+d^{4} k^{4}}{b^{4}+d^{4}}
=\frac{k^{4}\left(b^{4}+d^{4}\right)}{\left(b^{4}+d^{4}\right)}=k^{4}
R.H.S. =\frac{a^{2} c^{2}}{b^{2} d^{2}}=\frac{k^{2} b^{2} \cdot k^{2} d^{2}}{b^{2} \cdot d^{2}}=k^{4}
Hence L.H.S.=R.H.S.
(iv) \quad L.H.S =\frac{a^{2}+a b}{c^{2}+c d}=\frac{k^{2} b^{2}+b k \cdot b}{k^{2} d^{2}+d k \cdot d}
=\frac{k b^{2}(k+1)}{d^{2} k(k+1)}=\frac{b^{2}}{d^{2}}
\mathrm{R.H.S}=\frac{b^{2}-2 a b}{d^{2}-2 c d}=\frac{b^{2}-2 \cdot b k b}{d^{2}-2 d k d}
=\frac{b^{2}(1-2 k)}{d^{2}(1-2 k)}=\frac{b^{2}}{d^{2}}
\therefore \mathrm{L} \cdot \mathrm{H.S}=\mathrm{R} \cdot \mathrm{H.S}
(v) L.H.S. =\frac{(a+c)^{3}}{(b+d)^{3}}=\frac{(b k+d k)^{3}}{(b+d)^{3}}
=\frac{k^{3}(b+d)^{3}}{(b+d)^{3}}=k^{3}
R.H.S. =\frac{a(a-c)^{2}}{b(b-d)^{2}}=\frac{b k(b k-d k)^{2}}{b(b-d)^{2}}
=\frac{b k \cdot k^{2}(b-d)^{2}}{b(b-d)^{2}}=k^{3}
\therefore \mathrm{L} . \mathrm{H.S}=\mathrm{R} . \mathrm{H.S}
(v i) \quad L . H . S=\frac{a^{2}+a b+b^{2}}{a^{2}-a b+b^{2}}
=\frac{b^{2} k^{2}+b k \cdot b+b^{2}}{b^{2} k^{2}-b k \cdot b+b^{2}}
=\frac{b^{2}\left(k^{2}+k+1\right)}{b^{2}\left(k^{2}-k+1\right)}=\frac{k^{2}+k+1}{k^{2}-k+1}
\mathrm{R} \cdot \mathrm{H.S}=\frac{c^{2}+c d+d^{2}}{c^{2}-c d+d^{2}}
=\frac{d^{2} k^{2}+d k d+d^{2}}{d^{2} k^{2}-d k \cdot d+d^{2}}
=\frac{d^{2}\left(k^{2}+k+1\right)}{d^{2}\left(k^{2}-k+1\right)}=\frac{k^{2}+k+1}{k^{2}-k+1}
\therefore \mathrm{L} \cdot \mathrm{H.S}=\mathrm{R} \cdot \mathrm{H.S}
(vi) L . H . S=\frac{a^{2}+a b+b^{2}}{a^{2}-a b+b^{2}}
=\frac{b^{2} k^{2}+b k \cdot b+b^{2}}{b^{2} k^{2}-b k \cdot b+b^{2}}
=\frac{b^{2}\left(k^{2}+k+1\right)}{b^{2}\left(k^{2}-k+1\right)}=\frac{k^{2}+k+1}{k^{2}-k+1}
\mathrm{R} \cdot \mathrm{H.S}=\frac{c^{2}+c d+d^{2}}{c^{2}-c d+d^{2}}
=\frac{d^{2} k^{2}+d k d+d^{2}}{d^{2} k^{2}-d k \cdot d+d^{2}}
=\frac{d^{2}\left(k^{2}+k+1\right)}{d^{2}\left(k^{2}-k+1\right)}=\frac{k^{2}+k+1}{k^{2}-k+1}
\therefore \mathrm{L} \cdot \mathrm{H.S}=\mathrm{R} \cdot \mathrm{H.S}
(viii) \mathrm{L.H.S.}=a b c d\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}}\right)
(viii) L.H.S. =a b c d\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}}\right)
=b k.b. dk.d \left[\frac{1}{b^{2} k^{2}}+\frac{1}{b^{2}}+\frac{1}{d^{2} k^{2}}+\frac{1}{d^{2}}\right]
=k^{2} b^{2} d^{2}\left[\frac{d^{2}+d^{2} k^{2}+b^{2}+b^{2} k^{2}}{b^{2} d^{2} k^{2}}\right]
=d^{2}\left(1+k^{2}\right)+b^{2}\left(1+k^{2}\right)=\left(1+k^{2}\right)\left(b^{2}+d^{2}\right)
R.H.S =a^{2}+b^{2}+c^{2}+d^{2}
=b^{2} k^{2}+b^{2}+d^{2} k^{2}+d^{2}
=b^{2}\left(k^{2}+1\right)+d^{2}\left(k^{2}+1\right)=\left(k^{2}+1\right)\left(b^{2}+d^{2}\right)
\therefore L.H.S = R.H.S.
Question 20
If x, y, z are in continued proportion, prove that: \frac{(x+y)^{2}}{(y+z)^{2}}=\frac{x}{z}. (2010)
Then y=k z
x=y k=k z \times k=k^{2} z
Now L.H.S. =\frac{(x+y)^{2}}{(y+z)^{2}}
=\frac{\left(k^{2} z+k z\right)^{2}}{(k z+z)^{2}}=\frac{\{k z(k+1)\}^{2}}{\{z(k+1)\}^{2}}
=\frac{k^{2} z^{2}(k+1)^{2}}{z^{2}(k+1)^{2}}=k^{2}
\mathrm{R.H.S.}=\frac{x}{z}=\frac{k^{2} z}{z}=k^{3}
∴L.H.S=R.H.S
Question 21
If a, b, c are in continued proportion, prove that:
Sol :
Given a, b, c are in continued proportion
⇒a=bk and b=ck...(i)
⇒a=(ck)k=c k^{2} [using (i)]
b=ck
\mathrm{L.H.S.}=\frac{a}{c}=\frac{c k^{2}}{c}=k^{2}
R.H.S. =\frac{p\left(c k^{2}\right)^{2}+q\left(c k^{2}\right) c k+r(c k)^{2}}{p(c k)^{2}+q(c k) c+r c^{2}}
=\frac{p c^{2} k^{4}+q c^{2} k^{3}+r c^{2} k^{2}}{p c^{2} k^{2}+q c^{2} k+r c^{2}}
=\frac{c^{2} k^{2}}{c^{2}}\left[\frac{p k^{2}+q k+r}{p k^{2}+q k+r}\right]=k^{2}...(iii)
From (ii) and (iii) L.H.S=R.H.S
∴b=ck, a=bk=ckk=c k^{2}
(i) L.H.S
=\frac{a+b}{b+c}=\frac{c k^{2}+c k}{c k+c}=\frac{c k(k+1)}{c(k+1)}=k
\mathrm{R} . \mathrm{H.S}=\frac{a^{2}(b-c)}{b^{2}(a-b)}
=\frac{\left(c k^{2}\right)^{2}(c k-c)}{(c k)^{2}\left(c k^{2}-c k\right)}
=\frac{c^{2} k^{4} c(k-1)}{c^{2} k^{2} c k(k-1)}
Question 22
If a, b, c are in continued proportion, prove that:
Sol :
As a, b, c, are in continued proportion
=\frac{c^{3} k^{4}(k-1)}{c^{3} k^{3}(k-1)}=k
∴L.H.S=R.H.S
(ii) L.H.S. =\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}
=\frac{1}{\left(c k^{2}\right)^{3}}+\frac{1}{(c k)^{3}}+\frac{1}{c^{3}}
=\frac{1}{c^{3} k^{6}}+\frac{1}{c^{3} k^{3}}+\frac{1}{c^{3}}
=\frac{1}{c^{3}}\left[\frac{1}{k^{6}}+\frac{1}{k^{3}}+\frac{1}{1}\right]
R.H.S. =\frac{a}{b^{2} c^{2}}+\frac{b}{c^{2} a^{2}}+\frac{c}{a^{2} b^{2}}
=\frac{c k^{2}}{(c k)^{2} c^{2}}+\frac{c k}{c^{2}\left(c k^{2}\right)^{2}}+\frac{c}{\left(c k^{2}\right)^{2}(c k)^{2}}
=\frac{c k^{2}}{c^{4} k^{2}}+\frac{c k}{c^{4} k^{4}}+\frac{c}{c^{4} k^{6}}
=\frac{1}{c^{3}}+\frac{1}{c^{3} k^{3}}+\frac{1}{c^{3} k^{6}}
=\frac{1}{c^{3}}\left[1+\frac{1}{k^{3}}+\frac{1}{k^{6}}\right]
=\frac{1}{c^{3}}\left[\frac{1}{k^{6}}+\frac{1}{k^{3}}+1\right]
∴ L.H.S = R.H.S.
(iii) a: c=\left(a^{2}+b^{2}\right):\left(b^{2}+c^{2}\right)
\Rightarrow \frac{a}{c}=\frac{a^{2}+b^{2}}{b^{2}+c^{2}}
L.H.S. \frac{a}{c}=\frac{c k^{2}}{c}=k^{2}
R.H.S. =\frac{\left(c k^{2}\right)^{2}+(c k)^{2}}{(c k)^{2}+c^{2}}
=\frac{c^{2} k^{4}+c^{2} k^{2}}{c^{2} k^{2}+c^{2}}
=\frac{c^{2} k^{2}\left(k^{2}+1\right)}{c^{2}\left(k^{2}+1\right)}=k^{2}
∴ L.H.S = R.H.S.
(iv) L.H.S. =a^{2} b^{2} c^{2}\left(a^{-4}+b^{-4}+c^{-4}\right)
=a^{2} b^{2} c^{2}\left[\frac{1}{a^{4}}+\frac{1}{b^{4}}+\frac{1}{c^{4}}\right]
=\frac{a^{2} b^{2} c^{2}}{a^{4}}+\frac{a^{2} b^{2} c^{2}}{b^{4}}+\frac{a^{2} b^{2} c^{2}}{c^{4}}
=\frac{b^{2} c^{2}}{a^{2}}+\frac{c^{2} a^{2}}{b^{2}}+\frac{a^{2} b^{2}}{c^{2}}
=\frac{(c k)^{2} \cdot c^{2}}{\left(c k^{2}\right)^{2}}+\frac{c^{2}\left(c k^{2}\right)^{2}}{(c k)^{2}}+\frac{\left(c k^{2}\right)^{2}(c k)^{2}}{c^{2}}
=\frac{c^{2} k^{2} \cdot c^{2}}{c^{2} k^{4}}+\frac{c^{2} \cdot c^{2} k^{4}}{c^{2} k^{2}}+\frac{c^{2} k^{4} \cdot c^{2} k^{2}}{c^{2}}
=\frac{c^{2}}{k^{2}}+\frac{c^{2} k^{2}}{1}+\frac{c^{2} k^{6}}{1}
=c^{2}\left[\frac{1}{k^{2}}+k^{2}+k^{6}\right]
=\frac{c^{2}}{k^{2}}\left[1+k^{4}+k^{8}\right]
R.H.S. =b^{-2}\left[a^{4}+b^{4}+c^{4}\right]
=\frac{1}{b^{2}}\left[a^{4}+b^{4}+c^{4}\right]
=\frac{1}{(c k)^{2}}\left[\left(c k^{2}\right)^{4}+(c k)^{4}+c^{4}\right]
=\frac{1}{c^{2} k^{2}}\left[c^{4} k^{8}+c^{4} k^{4}+c^{4}\right]
=\frac{c^{4}}{c^{2} k^{2}}\left[k^{8}+k^{4}+1\right]
=\frac{c^{2}}{k^{2}}\left[1+k^{4}+k^{8}\right]
∴ L.H.S = R.H.S.
(v) L.H.S. =a b c(a+b+c)^{3}
=c k^{2}.ck.c \left[c k^{2}+c k+c\right]^{3}
=c^{3} k^{3}\left\{c\left(k^{2}+k+1\right)\right]^{3}
=c^{3} k^{3} \cdot c^{3} \cdot\left(k^{2}+k+1\right)^{3}=c^{6} k^{3}\left(k^{2}+k+1\right)^{3}
\mathrm{R} . \mathrm{H.S.}=(a b+b c+c a)^{3}
=\left(c k^{2} \cdot c k+c k \cdot c+c \cdot c k^{2}\right)^{3}
=\left(c^{2} k^{3}+c^{2} k+c^{2} k^{2}\right)^{3}=\left(c^{2} k^{3}+c^{2} k^{2}+c^{2} k\right)^{3}
=\left[c^{2} k\left(k^{2}+k+1\right)\right]^{3}=c^{6} k^{3}\left(k^{2}+k+1\right)^{3}
∴ L.H.S = R.H.S.
(vi) L.H.S. =(a+b+c)(a-b+c)
=\left(c k^{2}+c k+c\right)\left(c k^{2}-c k+c\right)
=c\left(k^{2}+k+1\right) c\left(k^{2}-k+1\right)
=c^{2}\left(k^{2}+k+1\right)\left(k^{2}-k+1\right)
=c^{2}\left(k^{4}+k^{2}+1\right)
R.H.S. =a^{2}+b^{2}+c^{2}
=\left(c k^{2}\right)^{2}+(c k)^{2}+(c)^{2}
=c^{2} k^{4}+c^{2} k^{2}+c^{2}=c^{2}\left(k^{4}+k^{2}+1\right)
∴ L.H.S = R.H.S.
Question 23
If a, b, c, d are in continued proportion, prove that:
Sol :
a, b, c, d are in continued proportion
\therefore c=d k, b=c k=d k . k=d k^{2}
a=b k=d k^{2} \cdot k=d k^{3}
(i) L.H.S. =\frac{a^{3}+b^{3}+c^{3}}{b^{3}+c^{3}+d^{3}}
=\frac{\left(d k^{3}\right)^{3}+\left(d k^{2}\right)^{3}+(d k)^{3}}{\left(d k^{2}\right)^{3}+(d k)^{3}+d^{3}}
=\frac{d^{3} k^{9}+d^{3} k^{6}+d^{3} k^{3}}{d^{3} k^{6}+d^{3} k^{3}+d^{3}}
=\frac{d^{3} k^{3}\left(k^{6}+k^{3}+1\right)}{d^{3}\left(k^{6}+k^{3}+1\right)}=k^{3}
\mathrm{R.H.S.}=\frac{a}{d}=\frac{d k^{3}}{d}=k^{3}
∴ L.H.S = R.H.S.
(ii) L.H.S. =\left(a^{2}-b^{2}\right)\left(c^{2}-d^{2}\right)
=\left[\left(d k^{3}\right)^{2}-\left(d k^{2}\right)^{2}\right]\left[(d k)^{2}-d^{2}\right]
=\left(d^{2} k^{6}-d^{2} k^{4}\right)\left(d^{2} k^{2}-d^{2}\right)
=d^{2} k^{4}\left(k^{2}-1\right) d^{2}\left(k^{2}-1\right)=d^{4} k^{4}\left(k^{2}-1\right)^{2}
\mathrm{R} \cdot \mathrm{H} . \mathrm{S} .=\left(b^{2}-c^{2}\right)^{2}=\left[\left(d k^{2}\right)^{2}-(d k)^{2}\right]^{2}
=\left[d^{2} k^{4}-d^{2} k^{2}\right]^{2}=\left[d^{2} k^{2}\left(k^{2}-1\right)\right]^{2}
=d^{4} k^{4}\left(k^{2}-1\right)^{2}
∴ L.H.S = R.H.S.
(iii) L.H.S. =(a+d)(b+c)-(a+c)(b+d)
=\left(d k^{3}+d\right)\left(d k^{2}+d k\right)-\left(d k^{3}+d k\right)\left(d k^{2}+d\right)
=d\left(k^{3}+1\right) d k(k+1)-d k\left(k^{2}+1\right) d\left(k^{2}+1\right)
=d^{2} k(k+1)\left(k^{3}+1\right)-d^{2} k\left(k^{2}+1\right)\left(k^{2}+1\right)
=d^{2} k\left[k^{4}+k^{3}+k+1-k^{4}-2 k^{2}-1\right]
=d^{2} k\left[k^{3}-2 k^{2}+k\right]=d^{2} k^{2}\left[k^{2}-2 k+1\right]
=d^{2} k^{2}(k-1)^{2}
\mathrm{R} . \mathrm{H.S.}=(b-c)^{2}=\left(d k^{2}-d k\right)^{2}=d^{2} k^{2}(k-1)^{2}
∴ L.H.S = R.H.S.
(iv) a : d= triplicate ratio of (a-b) : (b-c)
=(a-b)^{3}:(b-c)^{3}
L.H.S. =a: d=\frac{a}{d}=\frac{d k^{3}}{d}=k^{3}
\mathrm{R} . \mathrm{H.S.}=\frac{(a-b)^{3}}{(b-c)^{3}}
=\frac{\left(d k^{3}-d k^{2}\right)^{3}}{\left(d k^{2}-d k\right)^{3}}=\frac{d^{3} k^{6}(k-1)^{3}}{d^{3} k^{3}(k-1)^{3}}=k^{3}
∴ L.H.S = R.H.S.
(v) L.H.S=
\left(\frac{a-b}{c}+\frac{a-c}{b}\right)^{2}-\left(\frac{d-b}{c}+\frac{d-c}{b}\right)^{2}
=\left(\frac{d k^{3}-d k^{2}}{d k}+\frac{d k^{3}-d k}{d k^{2}}\right)^{2}-\cdot\left(\frac{d-d k^{2}}{d k}+\frac{d-d k}{d k^{2}}\right)^{2}
=\left(\frac{d k^{2}(k-1)}{d k}+\frac{d k\left(k^{2}-1\right)}{d k^{2}}\right)^{2}-\left(\frac{d\left(1-k^{2}\right)}{d k}+\frac{d(1-k)}{d k^{2}}\right)^{2}
=\left(k(k-1)+\frac{k^{2}-1}{k}\right)^{2}-\left(\frac{1-k^{2}}{k}+\frac{1-k}{k^{2}}\right)^{2}
=\left(\frac{k^{2}(k-1)+\left(k^{2}-1\right)}{k}\right)^{2}-\left(\frac{k\left(1-k^{2}\right)+1-k}{k^{2}}\right)^{2}
=\left(\frac{k^{3}-k^{2}+k^{2}-1}{k}\right)^{2}-\left(\frac{k-k^{3}+1-k}{k^{2}}\right)^{2}
=\frac{\left(k^{3}-1\right)^{2}}{k^{2}}-\frac{\left(-k^{3}+1\right)^{2}}{k^{4}}
=\frac{\left(k^{3}-1\right)^{2}}{k^{2}}-\frac{\left(1-k^{3}\right)^{2}}{k^{4}}
=\left(\frac{\left(k^{3}-1\right)}{k^{2}}\right)^{2}\left(1-\frac{1}{k^{2}}\right)=\frac{\left(k^{3}-1\right)^{2}\left(k^{2}-1\right)}{k^{4}}
=\frac{\left(k^{3}-1\right)^{2}\left(k^{2}-1\right)}{k^{4}}
R.H.S. =(a-d)^{2}\left(\frac{1}{c^{2}}-\frac{1}{b^{2}}\right)
=\left(d k^{3}-d\right)^{2}\left(\frac{1}{d^{2} k^{2}}-\frac{1}{d^{2} k^{4}}\right)
=d^{2}\left(k^{3}-1\right)^{2}\left(\frac{k^{2}-1}{d^{2} k^{4}}\right)=\frac{\left(k^{3}-1\right)^{2}\left(k^{2}-1\right)}{k^{4}}
∴ L.H.S = R.H.S.
Comments
Post a Comment