ML Aggarwal Solution Class 10 Chapter 7 Ratio and Proportion Exercise 7.2

 Exercise 7.2

Question 1

Find the value of x in the following proportions :

(i) 10 : 35 = x : 42

(ii) 3 : x = 24 : 2

(iii) 2.5 : 1.5 = x : 3

(iv) x : 50 :: 3 : 2

Sol :

(i) 10 : 35 = x : 42

⇒ 35×x = 10 × 42

x=10×4235=2×6=12


(ii) 3:x=24:2

x×24=3×2

x=3×224=14


(iii) 25:15=x:3

15×x=25×3

x=25×315=50


(iv) x:50::3:2

x×2=50×3

x=50×32=75


Question 2

Find the fourth proportional to

(i) 3, 12, 15

(ii) 13,14,15

(iii) 1.5, 2.5, 4.5

(iv) 9.6 kg, 7.2 kg, 28.8 kg

Sol :
(i) Let fourth proportional to
3, 12, 15 be x.
then 3 : 12 :: 15 : x
3×x=12×15
x=12×153=60


(ii) Let fourth proportional to 13,14,15 be x

then 13:14::15:x

13×x=14×15

x=14×15×31=320


(iii) Let fourth proportional to

15,25,45 be x

then 15:25::45:x

15×x=25×45

x=25×4515=75


(iv) Let fourth proportional to 9.6kg, 7.2 kg, 28.8 kg be x

then 9.6 : 7.2 :: 28.8 : x

96×x=72×288

x=72×28896=216


Question 3

Find the third proportional to

(i) 5, 10

(ii) 0.24, 0.6

(iii) Rs. 3, Rs. 12

(iv) 514 and 7

Sol :

(i) Let x be the third proportional to 5, 10,

then 5 : 10 :: 10 : x

5×x=10×10x=10×105=20

∴Third proportional =20


(ii) Let x be the third proportional to 0.24, 0.6

then 0.24 : 0.6 :: 0.6 : x

024×x=06×06

x=06×06024=15

∴ Third proportional =1.5


(iii) Let x be the third proportional to Rs. 3 and Rs. 12 then Rs. 3: Rs. 12: Rs. 12: x

x=12×123=48

Third proportional Rs 48


(iv) Let x be the third proportional to 514 and 7

then 514:7::7:x

214:7::7:x

214×x=7×7

x=7×7×421

=283=913

∴ Third proportional =913 Ans.


Question 4

Find the mean proportion of:

(i) 5 and 80

(ii) 112 and 175

(iii) 8.1 and 2.5

(iv) (a – b) and (a³ – a²b), a> b

Solution:

(i) Let x be the mean proportion of 5 and 80 ,

then 5 : x : : x : 80

x² = 5 x 80

⇒ x = √5×80=√400= 20

x = 20

Hence mean proportion=20


(ii) Let x be the mean proportion of 112 and 175
then 112:x::x:175

x2=112×175=1900

x=1900=130

Hence the mean proportion =130


(iii) Let the x be the mean proportion of 8.1 and 2.5 

∴ 8.1: x:: x: 2.5

x2=81×25

x=81×25=2025=45

Hence mean proportion =4.5


(iv) Let x be the mean proportion to (ab) and (a3a2b),a>b

then (ab):x::x:(a3a2b)

x2=(ab)(a3a2b)

=(ab)a2(ab)=a2(ab)2

∴ x=a(a-b)

Hence the mean proportion=a(a-b)


Question 5

If a, 12, 16 and b are in continued proportion find a and b.

Sol :

∵ a, 12, 16, b are in continued proportion, then

a12=1216=16b

a12=121616a=144

a=14416=

and 1216=16b12b=16×16=256

b=25612=643=2113

Hence a=9,b=643 or 2113


Question 6

What number must be added to each of the numbers 5, 11, 19 and 37 so that they are in proportion ? (2009)
Sol :
Let x be added to 5, 11, 19 and 37 to make them in proportion.
5 + x : 11 + x : : 19 + x : 37 + x

⇒ (5+x)(37+x)=(11+x)(19+x)

185+5x+37x+x2=209+11x+19x+x2

185+42x+x2=209+30x+x2

42x30x+x2x2=209185

⇒ 12 x=24
⇒ x=2

∴ Least number to be added =2


Question 7

What number should be subtracted from each of the numbers 23, 30, 57 and 78 so that the remainders are in proportion ? (2004)
Sol :
Let x be subtracted from each term, then
23 – x, 30 – x, 57 – x and 78 – x are proportional
23 – x : 30 – x : : 57 – x : 78 – x

23x30x=57x78x

⇒ (23-x)(78-x)=(30-x)(57-x)

179423x78x+x2

=171030x57x+x2

x2101x+1794=x287x+1710

x2101x+1794x2+87x1710=0

⇒-14 x+84=0

⇒ 14 x=84

x=8414=6

Hence 6 is to be subtracted Ans.


Question 8

If 2x – 1, 5x – 6, 6x + 2 and 15x – 9 are in proportion, find the value of x.
Sol :
∵ 2x – 1, 5x – 6, 6x + 2 and 15x – 9 are in proportion.
then (2x – 1) (15x – 9) = (5x – 6) (6x + 2)

30x218x15x+930x2+10x36x12
30x233x+9=30x226x12
30x233x30x2+26x=129
7x=21

x=217=3

Hence x=3


Question 9

If 2x – 1, 5x – 6, 6x + 2 and 15x – 9 are in proportion, find the value of x.

Sol :

∵ 2x – 1, 5x – 6, 6x + 2 and 15x – 9 are in proportion.

then (2x – 1) (15x – 9) = (5x – 6) (6x + 2)

30x218x15x+930x2+10x36x12
30x233x+9=30x226x12
30x233x30x2+26x=129
⇒-7 x=-21
x=217=3
Hence x=3

Question 10

What number must be added to each of the numbers 16, 26 and 40 so that the resulting numbers may be in continued proportion?

Sol :

Let x be added to each number then

16 + x, 26 + x and 40 + x

are in continued proportion.

16+x26+x=26+x40+x

Cross Multiplying,

(16+x)(40+x)=(26+x)(26+x)

640+16x+40x+x2=676+26x+26x+x2

640+56x+x2=676+52x+x2

56x+x252xx2=676640

⇒4x=36

x=364=9

∴9 is to be added.


Question 11

Find two numbers such that the mean proportional between them is 28 and the third proportional to them is 224.

Sol :

Let the two numbers are a and b.

∵ 28 is the mean proportional

∵ a : 28 : : 28 : b

ab=(28)2=784
a=784b(i)
∵ 224 is the third proportional
∵ a: b:: b: 224
b2=224a

Substituting the value of a in (ii)
b2=224×784bb3=224×784
b3=175616=(56)3
∴ b=56
Now substituting the value of b in (i) 
a=78456=14
Hence numbers are 14,56

Question 12

If b is the mean proportional between a and c, prove that a, c, a² + b², and b² + c² are proportional.

Sol :

∵ b is the mean proportional between a and c, then,

b² = a × c ⇒ b² = ac …(i)

Now a,c,a2+b2 and b2+c2 are in proportion
if ac=a2+b2b2+c2
if a(b2+c2)=c(a2+b2)
if a(ac+c2)=c(a2+ac)[ from (i)] if ac(a+c)=a2c+ac2
if ac(a+c)=ac(a+c) which is true. Hence proved.


Question 13

If b is the mean proportional between a and c, prove that (ab + bc) is the mean proportional between (a² + b²) and (b² + c²).

Sol :

b is the mean proportional between a and c then

b² = ac …(i)

Now if (ab + bc) is the mean proportional

between (a2+b2) and (b2+c2), then (ab+bc)2=(a2+b2)(b2+c2)
Now L.H.S. =(ab+bc)2=a2b2+b2c2+2ab2c
=a2(ac)+ac(c)2+2a ac. c[ from (i)]
=a3c+ac3+2a2c2
=ac(a2+c2+2ac)=ac(a+c)2
R.H.S.=(a2+b2)(b2+c2)
=(a2+ac)(ac+c2)[ from (i)]
=a(a+c)c(a+c)=ac(a+c)2
L.H.S=R.H.S


Question 14

If y is mean proportional between x and z, prove that

xyz (x + y + z)³ = (xy + yz + zx)³.

Sol :

∵ y is the mean proportional between

x and z, then

y² = xz …(i)

L.H.S. =xyz(x+y+z)3
=xz,y(x+y+z)3
=y2y(x+y+z)3 [from (i)]

=y3(x+y+z)3

=[y(x+y+z)]3

=[xy+y2+yz]3

=(xy+yz+zx)3 (from i)

=R.H.S


Question 15

If a + c = mb and  1b+1d=mc , prove that a, b, c and d are in proportion.

Sol :

a + c = mb and 1b+1d=mc

a + c = mb

ab+cd=m (Dividing by b)...(i)

and 1b+1d=mc

cb+cd=m (Multiplying by c)...(ii)

From (i) and (ii)

ab+cb=cb+cdab=cd

Hence, a, b, c and d are proportional.


Question 16

If xa=yb=zc, prove that

(i) x3a2+y3b2+z3c2=(x+y+z)3(a+b+c)2

(ii) [a2x2+b2y2+c2z2a3x+b3y+c3z]3=xyzabc

(iii) axby(a+b)(xy)+bycz(b+c)(yz)+czax(c+a)(zx)=3

Sol :

xa=yb=zc

x=ak,y=bk,z=ck

(i) L.H.S. =x3a2+y3b2+z3c2

=a3k3a2+b3k3b2+c3k3c2

=ak3+bk3+ck3=k3(a+b+c)

R.H.S. =(x+y+z)3(a+b+c)2

=(ak+bk+ck)3(a+b+c)2=k3(a+b+c)3(a+b+c)2

=k3(a+b+c)

Hence L.H.S. = R.H.S.


(ii) L.H.S =[a2x2+b2y2+c2z2a3x+b3y+c3z]3

=[a2a2k2+b2b2k2+c2c2k2a3ak+b3bk+c3ck]3

=[a4k2+b4k2+c4k2a4k+b4k+c4k]3

=[k2(a4+b4+c4)k(a4+b4+c4)]3=k3

R.H.S=xyzabc=akbkckabc=k3

∴L.H.S=R.H.S


(iii) L.H.S axby(a+b)(xy)+bycz(b+c)(yz)+czax(c+a)(zx)

=aakbbk(a+b)(akbk)+bbkcck(b+c)(bkck)+c.cka.ak(c+a)(ckak)

=a2kb2k(a+b)k(ab)+b2kc2k(b+c)k(bc)+c2ka2k(c+a)k(ca)

=k(a2b2)k(a2b2)+k(b2c2)k(b2c2)+k(c2a2)k(c2a2)

=1+1+1=3=R.H.S


Question 17

If ab=cd=et prove that

(i) (b² + d² + f²) (a² + c² + e²) = (ab + cd + ef)²

(ii) (a3+c3)2(b3+d3)2=e6f6

(iii) a2b2+c2d2+e2f2=acbd+cedf+aedf

(iv) bdf[a+bb+c+dd+c+ff]3=27(a+b)(c+d)(e+f)

Sol :

ab=cd=ef=k(say)

∴ a = bk, c = dk, e =fk

(i) L.H.S. =(b2+d2+f2)(a2+c2+e2)
=(b2+d2+f2)(b2k2+d2k2+f2k2)
=(b2+d2+f2)k2(b2+d2+f2)
=k2(b2+d2+f2)
RHS=(ab+cd+ef)2
=(b.kb.+dk.d+fk.f)2
=(kb2+kd2+kf2)=k2(b2+d2+f2)2
LH.S=RH.S

(ii) (a3+c3)2(b3+d3)2=(b3k3+d3k3)2(b3+d3)2
=[k3(b3+d3)]2(b3+a3)2=k6(b3+d3)2(b3+d3)2=k6
R.H.S=e6f6=f6k6f6=k6
LH.S=R.H.S

(iii) L.H.S=a2b2+c2d2+e2f2=b2k2b2
+d2k2d2+f2k2f2=k2+k2+k2=3k2
RH.S=acbd+cedf+aebf
=bkdkbd+dkfkdf+bkfkbf
=k2+k2+k2=3k2
LH.S=R.H.S

(iv) L.H.S =bdf[a+bb+c+dd+e+ff]3
=bdf[bk+bb+dk+dd+fk+ff]3
=bdf[b(k+1)b+d(k+1)d+f(k+1)f]
=bdf(k+1+k+1+k+1)3
=bdf(3k+3)3=27bdf(k+1)3
R.H.S =27(a+b)(c+d)(e+f)
=27(bk+b)(dk+d)(fk+f)
=27b(k+1)d(k+1)f(k+1)
=27bdf(k+1)3
LH.S=R.H.S

Question 18

If ax = by = cz; prove that
x2yz+y2zx+z2xy=bca2+cab2+abc2
Sol :
Let ax = by = cz = k
x=ka,y=kb,z=kc
L.H.S. =x2yz+y2zx+z2xy

=k2a2kbkc+k2b2kcka+k2c2kakb

=k2a2k2bc+k2b2k2ca+k2c2k2ab

=k2a2×bck2+k2b2×cak2+k2c2×abk2

=bca2+cab2+abc2=RH.S


Question 19

If a, b, c and d are in proportion, prove that:

(i) (5a + 7b) (2c – 3d) = (5c + 7d) (2a – 3b)

(ii) (ma + nb) : b = (mc + nd) : d

(iii) (a4 + c4) : (b4 + d4) = a2 c2 : b2 d2.

(iii) (a4+c4):(b4+d4)=a2c2:b2d2

(iv) a2+abc2+cd=b22abd22cd

(v) (a+c)3(b+d)3=a(ac)2b(bd)2

(vi) a2+ab+b2a2ab+b2=c2+cd+d2c2cd+d2

(vii) a2+b2c2+d2=ab+adbcbc+cdad

(viii) abcd [1a2+1b2+1c2+1d2=a2+b2+c2+d2

Sol :

∵ a, b, c, d are in proportion

ab=cd=k( say )

a=bk, c=dk

(i) L.H.S. =(5a+7b)(2c3d)

=(5bk+7b)(2dk3d)

=k(5b+7b)k(2d3d)

=k2(12b)×(d)=12bdk2

R.H.S.=(5c+7d)(2a3b)

=(5dk+7d)(2kb3b)

=k(5d+7d)k(2b3b)

=k2(12d)(b)=12k2bd=12bdk2

LH.S=RH.S


(ii) (ma+nb):b=(mc+nd):d

ma+nbb=mc+ndd

L.H.S. =mbk+nbb=b(mk+n)b

=m k+n

R.H.S.=mc+ndd=mdk+ndd

=d(mk+n)d=mk+n

LH.S=R.H.S


(iii) (a4+c4):(b4+d4)=a2c2:b2d2

a4+c4b4+d4=a2c2b2d2

L. H.S. =a4+c4b4+d4=b4k4+d4k4b4+d4

=k4(b4+d4)(b4+d4)=k4

R.H.S. =a2c2b2d2=k2b2k2d2b2d2=k4

Hence L.H.S.=R.H.S.


(iv) L.H.S =a2+abc2+cd=k2b2+bkbk2d2+dkd

=kb2(k+1)d2k(k+1)=b2d2

R.H.S=b22abd22cd=b22bkbd22dkd

=b2(12k)d2(12k)=b2d2

LH.S=RH.S


(v) L.H.S. =(a+c)3(b+d)3=(bk+dk)3(b+d)3

=k3(b+d)3(b+d)3=k3

R.H.S. =a(ac)2b(bd)2=bk(bkdk)2b(bd)2

=bkk2(bd)2b(bd)2=k3

L.H.S=R.H.S


(vi)L.H.S=a2+ab+b2a2ab+b2

=b2k2+bkb+b2b2k2bkb+b2

=b2(k2+k+1)b2(k2k+1)=k2+k+1k2k+1

RH.S=c2+cd+d2c2cd+d2

=d2k2+dkd+d2d2k2dkd+d2

=d2(k2+k+1)d2(k2k+1)=k2+k+1k2k+1

LH.S=RH.S


(vi)L.H.S=a2+ab+b2a2ab+b2

=b2k2+bkb+b2b2k2bkb+b2

=b2(k2+k+1)b2(k2k+1)=k2+k+1k2k+1

RH.S=c2+cd+d2c2cd+d2

=d2k2+dkd+d2d2k2dkd+d2

=d2(k2+k+1)d2(k2k+1)=k2+k+1k2k+1

LH.S=RH.S


(viii) L.H.S.=abcd(1a2+1b2+1c2+1d2)


(viii) L.H.S. =abcd(1a2+1b2+1c2+1d2)

=bk.b. dk.d [1b2k2+1b2+1d2k2+1d2]

=k2b2d2[d2+d2k2+b2+b2k2b2d2k2]

=d2(1+k2)+b2(1+k2)=(1+k2)(b2+d2)

R.H.S =a2+b2+c2+d2

=b2k2+b2+d2k2+d2

=b2(k2+1)+d2(k2+1)=(k2+1)(b2+d2)

L.H.S = R.H.S.


Question 20

If x, y, z are in continued proportion, prove that: (x+y)2(y+z)2=xz. (2010)

Sol :
x, y, z are in continued proportion

Let xy=yz=k

Then y=k z

x=yk=kz×k=k2z

Now L.H.S. =(x+y)2(y+z)2

=(k2z+kz)2(kz+z)2={kz(k+1)}2{z(k+1)}2

=k2z2(k+1)2z2(k+1)2=k2

R.H.S.=xz=k2zz=k3

∴L.H.S=R.H.S


Question 21

If a, b, c are in continued proportion, prove that:

pα2+qab+rb2pb2+qbc+rc2=αc

Sol :

Given a, b, c are in continued proportion

pα2+qαb+rb2pb2+qbc+rc2=ac
Let ab=bc=k

⇒a=bk and b=ck...(i)

⇒a=(ck)k=ck2  [using (i)]

b=ck

L.H.S.=ac=ck2c=k2

R.H.S. =p(ck2)2+q(ck2)ck+r(ck)2p(ck)2+q(ck)c+rc2

=pc2k4+qc2k3+rc2k2pc2k2+qc2k+rc2

=c2k2c2[pk2+qk+rpk2+qk+r]=k2...(iii)

From (ii) and (iii) L.H.S=R.H.S

∴b=ck, a=bk=ckk=ck2

(i) L.H.S

=a+bb+c=ck2+ckck+c=ck(k+1)c(k+1)=k

R.H.S=a2(bc)b2(ab)

=(ck2)2(ckc)(ck)2(ck2ck)

=c2k4c(k1)c2k2ck(k1)


Question 22

If a, b, c are in continued proportion, prove that:

(i) a+bb+c=a2(bc)b2(ab)
(ii) 1a3+1b3+1c3=ab2c2+bc2a2+ca2b2
(iii) a:c=(a2+b2):(b2+c2)
(iv) a2b2c2(a4+b4+c4)=b2(a4+b4+c4)
(v) abc(a+b+c)3=(ab+bc+ca)3
(vi) (a+b+c)(ab+c)=a2+b2+c2

Sol :

As a, b, c, are in continued proportion

Let ab=bc=k

=c3k4(k1)c3k3(k1)=k

∴L.H.S=R.H.S


(ii) L.H.S. =1a3+1b3+1c3

=1(ck2)3+1(ck)3+1c3

=1c3k6+1c3k3+1c3

=1c3[1k6+1k3+11]


R.H.S. =ab2c2+bc2a2+ca2b2

=ck2(ck)2c2+ckc2(ck2)2+c(ck2)2(ck)2

=ck2c4k2+ckc4k4+cc4k6

=1c3+1c3k3+1c3k6

=1c3[1+1k3+1k6]

=1c3[1k6+1k3+1]

∴ L.H.S = R.H.S.


(iii) a:c=(a2+b2):(b2+c2)

ac=a2+b2b2+c2

L.H.S. ac=ck2c=k2

R.H.S. =(ck2)2+(ck)2(ck)2+c2

=c2k4+c2k2c2k2+c2

=c2k2(k2+1)c2(k2+1)=k2

∴ L.H.S = R.H.S.


(iv) L.H.S. =a2b2c2(a4+b4+c4)

=a2b2c2[1a4+1b4+1c4]

=a2b2c2a4+a2b2c2b4+a2b2c2c4

=b2c2a2+c2a2b2+a2b2c2

=(ck)2c2(ck2)2+c2(ck2)2(ck)2+(ck2)2(ck)2c2

=c2k2c2c2k4+c2c2k4c2k2+c2k4c2k2c2

=c2k2+c2k21+c2k61

=c2[1k2+k2+k6]

=c2k2[1+k4+k8]

R.H.S. =b2[a4+b4+c4]

=1b2[a4+b4+c4]

=1(ck)2[(ck2)4+(ck)4+c4]

=1c2k2[c4k8+c4k4+c4]

=c4c2k2[k8+k4+1]

=c2k2[1+k4+k8]

∴ L.H.S = R.H.S.


(v) L.H.S. =abc(a+b+c)3

=ck2.ck.c [ck2+ck+c]3

=c3k3{c(k2+k+1)]3

=c3k3c3(k2+k+1)3=c6k3(k2+k+1)3

R.H.S.=(ab+bc+ca)3

=(ck2ck+ckc+cck2)3

=(c2k3+c2k+c2k2)3=(c2k3+c2k2+c2k)3

=[c2k(k2+k+1)]3=c6k3(k2+k+1)3

∴ L.H.S = R.H.S.


(vi) L.H.S. =(a+b+c)(ab+c)

=(ck2+ck+c)(ck2ck+c)

=c(k2+k+1)c(k2k+1)

=c2(k2+k+1)(k2k+1)

=c2(k4+k2+1)

R.H.S. =a2+b2+c2

=(ck2)2+(ck)2+(c)2

=c2k4+c2k2+c2=c2(k4+k2+1)

∴ L.H.S = R.H.S.


Question 23

If a, b, c, d are in continued proportion, prove that:

(i) a3+b3+c3b3+c3+33=ad
(ii) (a2b2)(c2d2)=(b2c2)2
(iii) (a+d)(b+c)(a+c)(b+d)=(bc)2
(iv) a:d= triplicate ratio of (ab):(bc)
(v) (abc+acb)2(dbc+dcb)2.
=(ad)2(1c21b2)

Sol :

a, b, c, d are in continued proportion

ab=bc=cd=k(say)

c=dk,b=ck=dk.k=dk2

a=bk=dk2k=dk3


(i) L.H.S. =a3+b3+c3b3+c3+d3

=(dk3)3+(dk2)3+(dk)3(dk2)3+(dk)3+d3

=d3k9+d3k6+d3k3d3k6+d3k3+d3

=d3k3(k6+k3+1)d3(k6+k3+1)=k3

R.H.S.=ad=dk3d=k3

∴ L.H.S = R.H.S.


(ii) L.H.S. =(a2b2)(c2d2)

=[(dk3)2(dk2)2][(dk)2d2]

=(d2k6d2k4)(d2k2d2)

=d2k4(k21)d2(k21)=d4k4(k21)2

RH.S.=(b2c2)2=[(dk2)2(dk)2]2

=[d2k4d2k2]2=[d2k2(k21)]2

=d4k4(k21)2

∴ L.H.S = R.H.S.


(iii) L.H.S. =(a+d)(b+c)(a+c)(b+d)

=(dk3+d)(dk2+dk)(dk3+dk)(dk2+d)

=d(k3+1)dk(k+1)dk(k2+1)d(k2+1)

=d2k(k+1)(k3+1)d2k(k2+1)(k2+1)

=d2k[k4+k3+k+1k42k21]

=d2k[k32k2+k]=d2k2[k22k+1]

=d2k2(k1)2

R.H.S.=(bc)2=(dk2dk)2=d2k2(k1)2

∴ L.H.S = R.H.S.


(iv) a : d= triplicate ratio of (a-b) : (b-c)

=(ab)3:(bc)3

L.H.S. =a:d=ad=dk3d=k3

R.H.S.=(ab)3(bc)3

=(dk3dk2)3(dk2dk)3=d3k6(k1)3d3k3(k1)3=k3

∴ L.H.S = R.H.S.


(v) L.H.S=

(abc+acb)2(dbc+dcb)2

=(dk3dk2dk+dk3dkdk2)2(ddk2dk+ddkdk2)2

=(dk2(k1)dk+dk(k21)dk2)2(d(1k2)dk+d(1k)dk2)2

=(k(k1)+k21k)2(1k2k+1kk2)2

=(k2(k1)+(k21)k)2(k(1k2)+1kk2)2

=(k3k2+k21k)2(kk3+1kk2)2

=(k31)2k2(k3+1)2k4

=(k31)2k2(1k3)2k4

=((k31)k2)2(11k2)=(k31)2(k21)k4

=(k31)2(k21)k4

R.H.S. =(ad)2(1c21b2)

=(dk3d)2(1d2k21d2k4)

=d2(k31)2(k21d2k4)=(k31)2(k21)k4

∴ L.H.S = R.H.S.

Comments

Popular posts from this blog

ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1

ML Aggarwal Solution Class 9 Chapter 20 Statistics Exercise 20.2

ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.2