ML Aggarwal Solution Class 10 Chapter 7 Ratio and Proportion Exercise 7.2
Exercise 7.2
Question 1
Find the value of x in the following proportions :
(i) 10 : 35 = x : 42
(ii) 3 : x = 24 : 2
(iii) 2.5 : 1.5 = x : 3
(iv) x : 50 :: 3 : 2
Sol :
(i) 10 : 35 = x : 42
⇒ 35×x = 10 × 42
(ii) 3:x=24:2
⇒x×24=3×2
∴x=3×224=14
(iii) 2⋅5:1⋅5=x:3
⇒1⋅5×x=2⋅5×3
x=2⋅5×31⋅5=5⋅0
(iv) x:50::3:2
⇒x×2=50×3
x=50×32=75
Question 2
Find the fourth proportional to
(i) 3, 12, 15
⇒x=14×15×31=320
(iii) Let fourth proportional to
1⋅5,2⋅5,4⋅5 be x
then 1⋅5:2⋅5::4⋅5:x
∴1⋅5×x=2⋅5×4⋅5
x=2⋅5×4⋅51⋅5=7⋅5
(iv) Let fourth proportional to 9.6kg, 7.2 kg, 28.8 kg be x
then 9.6 : 7.2 :: 28.8 : x
⇒9⋅6×x=7⋅2×28⋅8
x=7⋅2×28⋅89⋅6=21⋅6
Question 3
Find the third proportional to
(i) 5, 10
(ii) 0.24, 0.6
(iii) Rs. 3, Rs. 12
Sol :
(i) Let x be the third proportional to 5, 10,
then 5 : 10 :: 10 : x
∴Third proportional =20
(ii) Let x be the third proportional to 0.24, 0.6
then 0.24 : 0.6 :: 0.6 : x
∴0⋅24×x=0⋅6×0⋅6
x=0⋅6×0⋅60⋅24=1⋅5
∴ Third proportional =1.5
(iii) Let x be the third proportional to Rs. 3 and Rs. 12 then Rs. 3: Rs. 12: Rs. 12: x
∴x=12×123=48
∴ Third proportional Rs 48
(iv) Let x be the third proportional to 514 and 7
then 514:7::7:x
⇒214:7::7:x
∴214×x=7×7
x=7×7×421
=283=913
∴ Third proportional =913 Ans.
Question 4
Find the mean proportion of:
(i) 5 and 80
(ii) 112 and 175
(iii) 8.1 and 2.5
(iv) (a – b) and (a³ – a²b), a> b
Solution:
(i) Let x be the mean proportion of 5 and 80 ,
then 5 : x : : x : 80
x² = 5 x 80
⇒ x = √5×80=√400= 20
x = 20
∴x2=112×175=1900
∴x=√1900=130
Hence the mean proportion =130
(iii) Let the x be the mean proportion of 8.1 and 2.5
∴ 8.1: x:: x: 2.5
∴x2=8⋅1×2⋅5
∴x=√8⋅1×2⋅5=√20⋅25=4⋅5
Hence mean proportion =4.5
(iv) Let x be the mean proportion to (a−b) and (a3−a2b),a>b
then (a−b):x::x:(a3−a2b)
x2=(a−b)(a3−a2b)
=(a−b)a2(a−b)=a2(a−b)2
∴ x=a(a-b)
Hence the mean proportion=a(a-b)
Question 5
If a, 12, 16 and b are in continued proportion find a and b.
Sol :
∵ a, 12, 16, b are in continued proportion, then
Question 6
Question 7
Question 8
∴x=−21−7=3
Hence x=3
Question 9
If 2x – 1, 5x – 6, 6x + 2 and 15x – 9 are in proportion, find the value of x.
Sol :
∵ 2x – 1, 5x – 6, 6x + 2 and 15x – 9 are in proportion.
then (2x – 1) (15x – 9) = (5x – 6) (6x + 2)
Question 10
What number must be added to each of the numbers 16, 26 and 40 so that the resulting numbers may be in continued proportion?
Sol :
Let x be added to each number then
16 + x, 26 + x and 40 + x
are in continued proportion.
Cross Multiplying,
(16+x)(40+x)=(26+x)(26+x)
⇒640+16x+40x+x2=676+26x+26x+x2
⇒640+56x+x2=676+52x+x2
⇒56x+x2−52x−x2=676−640
⇒4x=36
⇒x=364=9
∴9 is to be added.
Question 11
Find two numbers such that the mean proportional between them is 28 and the third proportional to them is 224.
Sol :
Let the two numbers are a and b.
∵ 28 is the mean proportional
∵ a : 28 : : 28 : b
Question 12
If b is the mean proportional between a and c, prove that a, c, a² + b², and b² + c² are proportional.
Sol :
∵ b is the mean proportional between a and c, then,
b² = a × c ⇒ b² = ac …(i)
Question 13
If b is the mean proportional between a and c, prove that (ab + bc) is the mean proportional between (a² + b²) and (b² + c²).
Sol :
b is the mean proportional between a and c then
b² = ac …(i)
Now if (ab + bc) is the mean proportional
Question 14
If y is mean proportional between x and z, prove that
xyz (x + y + z)³ = (xy + yz + zx)³.
Sol :
∵ y is the mean proportional between
x and z, then
y² = xz …(i)
=y3(x+y+z)3
=[y(x+y+z)]3
=[xy+y2+yz]3
=(xy+yz+zx)3 (from i)
=R.H.S
Question 15
If a + c = mb and 1b+1d=mc , prove that a, b, c and d are in proportion.
Sol :
a + c = mb and 1b+1d=mc
a + c = mb
and 1b+1d=mc
cb+cd=m (Multiplying by c)...(ii)
From (i) and (ii)
ab+cb=cb+cd⇒ab=cd
Hence, a, b, c and d are proportional.
Question 16
If xa=yb=zc, prove that
(i) x3a2+y3b2+z3c2=(x+y+z)3(a+b+c)2
(ii) [a2x2+b2y2+c2z2a3x+b3y+c3z]3=xyzabc
(iii) ax−by(a+b)(x−y)+by−cz(b+c)(y−z)+cz−ax(c+a)(z−x)=3
Sol :
xa=yb=zc
∴x=ak,y=bk,z=ck
(i) L.H.S. =x3a2+y3b2+z3c2
=a3k3a2+b3k3b2+c3k3c2
=ak3+bk3+ck3=k3(a+b+c)
R.H.S. =(x+y+z)3(a+b+c)2
=(ak+bk+ck)3(a+b+c)2=k3(a+b+c)3(a+b+c)2
=k3(a+b+c)
Hence L.H.S. = R.H.S.
(ii) L.H.S =[a2x2+b2y2+c2z2a3x+b3y+c3z]3
=[a2⋅a2k2+b2⋅b2k2+c2⋅c2k2a3⋅a⋅k+b3⋅bk+c3⋅ck]3
=[a4k2+b4k2+c4k2a4k+b4k+c4k]3
=[k2(a4+b4+c4)k(a4+b4+c4)]3=k3
R.H.S=xyzabc=ak⋅bk⋅ckabc=k3
∴L.H.S=R.H.S
(iii) L.H.S ax−by(a+b)(x−y)+by−cz(b+c)(y−z)+cz−ax(c+a)(z−x)
=a⋅ak−b⋅bk(a+b)(ak−bk)+b⋅bk−c⋅ck(b+c)(bk−ck)+c.ck−a.ak(c+a)(ck−ak)
=a2k−b2k(a+b)k(a−b)+b2k−c2k(b+c)k(b−c)+c2k−a2k(c+a)k(c−a)
=k(a2−b2)k(a2−b2)+k(b2−c2)k(b2−c2)+k(c2−a2)k(c2−a2)
=1+1+1=3=R.H.S
Question 17
If ab=cd=et prove that
(i) (b² + d² + f²) (a² + c² + e²) = (ab + cd + ef)²
(iii) a2b2+c2d2+e2f2=acbd+cedf+aedf
(iv) bdf[a+bb+c+dd+c+ff]3=27(a+b)(c+d)(e+f)
Sol :
ab=cd=ef=k(say)
∴ a = bk, c = dk, e =fk
Question 18
=k2a2×bck2+k2b2×cak2+k2c2×abk2
=bca2+cab2+abc2=R⋅H.S
Question 19
If a, b, c and d are in proportion, prove that:
(i) (5a + 7b) (2c – 3d) = (5c + 7d) (2a – 3b)
(ii) (ma + nb) : b = (mc + nd) : d
(iii) (a4 + c4) : (b4 + d4) = a2 c2 : b2 d2.
(viii) abcd [1a2+1b2+1c2+1d2=a2+b2+c2+d2
Sol :
∵ a, b, c, d are in proportion
a=bk, c=dk
(i) L.H.S. =(5a+7b)(2c−3d)
=(5⋅bk+7b)(2dk−3d)
=k(5b+7b)k(2d−3d)
=k2(12b)×(−d)=−12bdk2
R.H.S.=(5c+7d)(2a−3b)
=(5dk+7d)(2k⋅b−3b)
=k(5d+7d)k(2b−3b)
=k2(12d)(−b)=−12k2bd=−12bdk2
∴L⋅H.S=R⋅H.S
(ii) (ma+nb):b=(mc+nd)∗:d
⇒ma+nbb=mc+ndd
L.H.S. =mbk+nbb=b(mk+n)b
=m k+n
R.H.S.=mc+ndd=mdk+ndd
=d(mk+n)d=mk+n
∴L⋅H.S=R.H.S
(iii) (a4+c4):(b4+d4)=a2c2:b2d2
a4+c4b4+d4=a2c2b2d2
L. H.S. =a4+c4b4+d4=b4k4+d4k4b4+d4
=k4(b4+d4)(b4+d4)=k4
R.H.S. =a2c2b2d2=k2b2⋅k2d2b2⋅d2=k4
Hence L.H.S.=R.H.S.
(iv) L.H.S =a2+abc2+cd=k2b2+bk⋅bk2d2+dk⋅d
=kb2(k+1)d2k(k+1)=b2d2
R.H.S=b2−2abd2−2cd=b2−2⋅bkbd2−2dkd
=b2(1−2k)d2(1−2k)=b2d2
∴L⋅H.S=R⋅H.S
(v) L.H.S. =(a+c)3(b+d)3=(bk+dk)3(b+d)3
=k3(b+d)3(b+d)3=k3
R.H.S. =a(a−c)2b(b−d)2=bk(bk−dk)2b(b−d)2
=bk⋅k2(b−d)2b(b−d)2=k3
∴L.H.S=R.H.S
(vi)L.H.S=a2+ab+b2a2−ab+b2
=b2k2+bk⋅b+b2b2k2−bk⋅b+b2
=b2(k2+k+1)b2(k2−k+1)=k2+k+1k2−k+1
R⋅H.S=c2+cd+d2c2−cd+d2
=d2k2+dkd+d2d2k2−dk⋅d+d2
=d2(k2+k+1)d2(k2−k+1)=k2+k+1k2−k+1
∴L⋅H.S=R⋅H.S
(vi)L.H.S=a2+ab+b2a2−ab+b2
=b2k2+bk⋅b+b2b2k2−bk⋅b+b2
=b2(k2+k+1)b2(k2−k+1)=k2+k+1k2−k+1
R⋅H.S=c2+cd+d2c2−cd+d2
=d2k2+dkd+d2d2k2−dk⋅d+d2
=d2(k2+k+1)d2(k2−k+1)=k2+k+1k2−k+1
∴L⋅H.S=R⋅H.S
(viii) L.H.S.=abcd(1a2+1b2+1c2+1d2)
(viii) L.H.S. =abcd(1a2+1b2+1c2+1d2)
=bk.b. dk.d [1b2k2+1b2+1d2k2+1d2]
=k2b2d2[d2+d2k2+b2+b2k2b2d2k2]
=d2(1+k2)+b2(1+k2)=(1+k2)(b2+d2)
R.H.S =a2+b2+c2+d2
=b2k2+b2+d2k2+d2
=b2(k2+1)+d2(k2+1)=(k2+1)(b2+d2)
∴ L.H.S = R.H.S.
Question 20
If x, y, z are in continued proportion, prove that: (x+y)2(y+z)2=xz. (2010)
Then y=k z
x=yk=kz×k=k2z
Now L.H.S. =(x+y)2(y+z)2
=(k2z+kz)2(kz+z)2={kz(k+1)}2{z(k+1)}2
=k2z2(k+1)2z2(k+1)2=k2
R.H.S.=xz=k2zz=k3
∴L.H.S=R.H.S
Question 21
If a, b, c are in continued proportion, prove that:
Sol :
Given a, b, c are in continued proportion
⇒a=bk and b=ck...(i)
⇒a=(ck)k=ck2 [using (i)]
b=ck
L.H.S.=ac=ck2c=k2
R.H.S. =p(ck2)2+q(ck2)ck+r(ck)2p(ck)2+q(ck)c+rc2
=pc2k4+qc2k3+rc2k2pc2k2+qc2k+rc2
=c2k2c2[pk2+qk+rpk2+qk+r]=k2...(iii)
From (ii) and (iii) L.H.S=R.H.S
∴b=ck, a=bk=ckk=ck2
(i) L.H.S
=a+bb+c=ck2+ckck+c=ck(k+1)c(k+1)=k
R.H.S=a2(b−c)b2(a−b)
=(ck2)2(ck−c)(ck)2(ck2−ck)
=c2k4c(k−1)c2k2ck(k−1)
Question 22
If a, b, c are in continued proportion, prove that:
Sol :
As a, b, c, are in continued proportion
=c3k4(k−1)c3k3(k−1)=k
∴L.H.S=R.H.S
(ii) L.H.S. =1a3+1b3+1c3
=1(ck2)3+1(ck)3+1c3
=1c3k6+1c3k3+1c3
=1c3[1k6+1k3+11]
R.H.S. =ab2c2+bc2a2+ca2b2
=ck2(ck)2c2+ckc2(ck2)2+c(ck2)2(ck)2
=ck2c4k2+ckc4k4+cc4k6
=1c3+1c3k3+1c3k6
=1c3[1+1k3+1k6]
=1c3[1k6+1k3+1]
∴ L.H.S = R.H.S.
(iii) a:c=(a2+b2):(b2+c2)
⇒ac=a2+b2b2+c2
L.H.S. ac=ck2c=k2
R.H.S. =(ck2)2+(ck)2(ck)2+c2
=c2k4+c2k2c2k2+c2
=c2k2(k2+1)c2(k2+1)=k2
∴ L.H.S = R.H.S.
(iv) L.H.S. =a2b2c2(a−4+b−4+c−4)
=a2b2c2[1a4+1b4+1c4]
=a2b2c2a4+a2b2c2b4+a2b2c2c4
=b2c2a2+c2a2b2+a2b2c2
=(ck)2⋅c2(ck2)2+c2(ck2)2(ck)2+(ck2)2(ck)2c2
=c2k2⋅c2c2k4+c2⋅c2k4c2k2+c2k4⋅c2k2c2
=c2k2+c2k21+c2k61
=c2[1k2+k2+k6]
=c2k2[1+k4+k8]
R.H.S. =b−2[a4+b4+c4]
=1b2[a4+b4+c4]
=1(ck)2[(ck2)4+(ck)4+c4]
=1c2k2[c4k8+c4k4+c4]
=c4c2k2[k8+k4+1]
=c2k2[1+k4+k8]
∴ L.H.S = R.H.S.
(v) L.H.S. =abc(a+b+c)3
=ck2.ck.c [ck2+ck+c]3
=c3k3{c(k2+k+1)]3
=c3k3⋅c3⋅(k2+k+1)3=c6k3(k2+k+1)3
R.H.S.=(ab+bc+ca)3
=(ck2⋅ck+ck⋅c+c⋅ck2)3
=(c2k3+c2k+c2k2)3=(c2k3+c2k2+c2k)3
=[c2k(k2+k+1)]3=c6k3(k2+k+1)3
∴ L.H.S = R.H.S.
(vi) L.H.S. =(a+b+c)(a−b+c)
=(ck2+ck+c)(ck2−ck+c)
=c(k2+k+1)c(k2−k+1)
=c2(k2+k+1)(k2−k+1)
=c2(k4+k2+1)
R.H.S. =a2+b2+c2
=(ck2)2+(ck)2+(c)2
=c2k4+c2k2+c2=c2(k4+k2+1)
∴ L.H.S = R.H.S.
Question 23
If a, b, c, d are in continued proportion, prove that:
Sol :
a, b, c, d are in continued proportion
∴c=dk,b=ck=dk.k=dk2
a=bk=dk2⋅k=dk3
(i) L.H.S. =a3+b3+c3b3+c3+d3
=(dk3)3+(dk2)3+(dk)3(dk2)3+(dk)3+d3
=d3k9+d3k6+d3k3d3k6+d3k3+d3
=d3k3(k6+k3+1)d3(k6+k3+1)=k3
R.H.S.=ad=dk3d=k3
∴ L.H.S = R.H.S.
(ii) L.H.S. =(a2−b2)(c2−d2)
=[(dk3)2−(dk2)2][(dk)2−d2]
=(d2k6−d2k4)(d2k2−d2)
=d2k4(k2−1)d2(k2−1)=d4k4(k2−1)2
R⋅H.S.=(b2−c2)2=[(dk2)2−(dk)2]2
=[d2k4−d2k2]2=[d2k2(k2−1)]2
=d4k4(k2−1)2
∴ L.H.S = R.H.S.
(iii) L.H.S. =(a+d)(b+c)−(a+c)(b+d)
=(dk3+d)(dk2+dk)−(dk3+dk)(dk2+d)
=d(k3+1)dk(k+1)−dk(k2+1)d(k2+1)
=d2k(k+1)(k3+1)−d2k(k2+1)(k2+1)
=d2k[k4+k3+k+1−k4−2k2−1]
=d2k[k3−2k2+k]=d2k2[k2−2k+1]
=d2k2(k−1)2
R.H.S.=(b−c)2=(dk2−dk)2=d2k2(k−1)2
∴ L.H.S = R.H.S.
(iv) a : d= triplicate ratio of (a-b) : (b-c)
=(a−b)3:(b−c)3
L.H.S. =a:d=ad=dk3d=k3
R.H.S.=(a−b)3(b−c)3
=(dk3−dk2)3(dk2−dk)3=d3k6(k−1)3d3k3(k−1)3=k3
∴ L.H.S = R.H.S.
(v) L.H.S=
(a−bc+a−cb)2−(d−bc+d−cb)2
=(dk3−dk2dk+dk3−dkdk2)2−⋅(d−dk2dk+d−dkdk2)2
=(dk2(k−1)dk+dk(k2−1)dk2)2−(d(1−k2)dk+d(1−k)dk2)2
=(k(k−1)+k2−1k)2−(1−k2k+1−kk2)2
=(k2(k−1)+(k2−1)k)2−(k(1−k2)+1−kk2)2
=(k3−k2+k2−1k)2−(k−k3+1−kk2)2
=(k3−1)2k2−(−k3+1)2k4
=(k3−1)2k2−(1−k3)2k4
=((k3−1)k2)2(1−1k2)=(k3−1)2(k2−1)k4
=(k3−1)2(k2−1)k4
R.H.S. =(a−d)2(1c2−1b2)
=(dk3−d)2(1d2k2−1d2k4)
=d2(k3−1)2(k2−1d2k4)=(k3−1)2(k2−1)k4
∴ L.H.S = R.H.S.
Comments
Post a Comment