ML Aggarwal Solution Class 9 Chapter 9 Logarithms Test
Test
Question 1
Expand $\log _{a} \sqrt[3]{x^{7} y^{8} \div \sqrt[4]{z}}$
Sol :
⇒$\log _{a} \sqrt[3]{x^{7} y^{8} \div \sqrt[4]{z}}$
⇒$=\log _{a}\left(x^{7} y^{8} \div \sqrt[4]{z}\right)^{1 / 3}$
⇒$=\frac{1}{3} \log _{a}\left(x^{7} y^{8} \div \sqrt[4]{z}\right)$
⇒$=\frac{1}{3}\left[\log _{a} x^{7} y^{8}-\log _{a} \sqrt[4]{z}\right]$
⇒$=\frac{1}{3}\left[7 \log _{a} x+8 \log _{a} y-\log _{a}(z)^{1 / 4}\right]$
⇒$=\frac{1}{3}\left[7 \log _{a} x+8 \log _{a} y-\frac{1}{4} \log _{a} z\right]$
⇒$=\frac{7}{3} \log _{a} x+\frac{8}{3} \log _{a} y \div \frac{1}{12} \log _{a} z$
Question 2
Find the value of $\log \sqrt{3} 3 \sqrt{3}-\log _{5}(0.04)$
Sol :
⇒$\log _{\sqrt{3}} 3 \sqrt{3}-\log _{5}(0 \cdot 04)$
$=\log _{\sqrt{3}} 3+\log _{\sqrt{3}} \sqrt{3}-\log _{5} \frac{4}{100}$
$=\log _{\sqrt{3}} 3+1-\log _{5} \frac{1}{25}$
$=\log _{\sqrt{3}} 3+1-\log _{5} 5^{-2}$
$=\log _{\sqrt{3}} 3+1-(-2) \log _{5} 5$
$=\log _{\sqrt{3}}(\sqrt{3})^{2}+1+2 \times 1$
$=2 \log _{\sqrt{3}} \sqrt{3}+1+2$
=2×1+1+2
=2×1+2=5
Question 3
Prove the following:
Sol :
⇒$(\log x)^{2}-(\log y)^{2}=\log \frac{x}{y} \cdot \log x y$
L.H.S$=(\log x)^{2}-(\log y)^{2}=(\log x-\log y)(\log x+\log y$
$\left[\because A^{2}-B^{2}=(A-B)(A+B)\right]$
$=\left(\log \frac{x}{y}\right)(\log x y)=\log \frac{x}{y} \cdot \log x y$=R.H.S
Result is proved
(ii) $2 \log \frac{11}{13}+\log \frac{130}{77}-\log \frac{55}{91}=\log 2 .$
Sol :
L.H.S$=2 \log \frac{11}{13}+\log \frac{130}{77}-\log \frac{55}{91}$
=2[log 11-log 13]+[log 130- log 77]-[log 55- log 91]
=2[log 11-log 13]+[log 13×10-log 11×7]-[log 11×5-log 13×7]
=2[log 11-log 13]+[(log 13+log 10)-(log 11+log 7)]-[(log 11+log 5)-(log 13+log 7)]
=2 log 11-2 log 13+ log 10- log 11- log 7-log 11- log 5+ log 13+ log 7
=(2 log 11-log 11-log 11)+(-2 log 13+log 13+log 13)+log 10-log 5+(log 7-log 7)
=0+0+ log 10- log 5+0= log 10- log 5
$=\log \left(\frac{10}{5}\right)=\log 2$
=R.H.S
Hence, Result is proved.
Question 4
If log (m + n) = log m + log n, show that $n=\frac{m}{m-1}$
Sol :
Given log (m+n)= log m+log n
⇒log (m+n)=\log m n
⇒m+n=m n
⇒m=m n-n
⇒m=n(m-1)
⇒n(m-1)=m
⇒$n=\frac{m}{m-1}
Hence, result is proved.
Question 5
If $\log \frac{x+y}{2}=\frac{1}{2}(\log x+\log y),$ prove that x=y
Sol :
⇒$\log \frac{x+y}{2}=\frac{1}{2}(\log x+\log y)$
⇒$\log \frac{x+y}{2}=\frac{1}{2} \log (x \times y)$
⇒$\log \frac{x+y}{2}=\log (x \times y)^{\frac{1}{2}}$
∴$\frac{x+y}{2}=(x \times y)^{\frac{1}{2}}=x y^{\frac{1}{2}} $
⇒$x+y=2(x y)^{\frac{1}{2}}$
Squaring
⇒$(x+y)^{2}=4 x y$
⇒$x^{2}+y^{2}+2 x y=4 x y$
⇒$x^{2}+y^{2}+2 x y-4 x y=0$
⇒$x^{2}+y^{2}-2 x y=0$
⇒$(x-y)^{2}=0$
⇒x-y=0
∴x=y
Hence proved
Question 6
If a, b are positive real numbers, a>b and $a^{2}+b^{2}=27ab,$ prove that \log \left(\frac{a-b}{5}\right)=\frac{1}{2}(\log a+\log b)
Sol :
⇒$a^{2}+b^{2}=27 a b$
⇒$a^{2}+b^{2}-2 a b=25 a b$
⇒$\frac{a^{2}+b^{2}-2 a b}{25}=a b$
⇒$\left(\frac{a-b}{5}\right)^{2}=a b$
Taking log both sides, $\log \left(\frac{a-b}{5}\right)^{2}=\log a b$
⇒$2 \log \left(\frac{a-b}{5}\right)=\log a+\log b$
⇒$\log \left(\frac{a-b}{5}\right)=\frac{1}{2}(\log a+\log b)$
Hence proved
Solve the following equations for x
Question 7
Solve the following equations for x:
⇒$(x)^{-2}=\frac{1}{49}$
⇒$(x)^{-2}=\left(\frac{1}{7}\right)^{2}$
⇒$(x)^{-2}=(7)^{-2}$
⇒x=7
(ii) $\log _{x} \frac{1}{4 \sqrt{2}}=-5$
Sol :
⇒$\frac{-1}{5} \log _{x} \frac{1}{4 \sqrt{2}}=1$
⇒$-\frac{1}{5} \log _{x} \frac{1}{\sqrt{32}}=1$
⇒$-\frac{1}{5} \log _{x} \frac{1}{2^{\frac{5}{2}}}=1$
⇒$-\frac{1}{5} \log _{x} 2^{\frac{-5}{2}}=1$
⇒$-\frac{1}{5} \times\left(\frac{-5}{2}\right) \log _{x} 2=1$
⇒$\frac{1}{2} \log _{x} 2=1$
⇒$\log _{x}\left(2^{\frac{1}{2}}\right)=1$
⇒$\log _{x} \sqrt{2}=\log _{x} x$
∴x=√2
(iii) $\log _{x} \frac{1}{243}=10$
⇒$\frac{1}{10} \log _{x} \frac{1}{243}=1$
⇒$\frac{1}{10} \log _{x} \frac{1}{3^{5}}=1$
⇒$\frac{1}{10} \log _{x}(3)^{-5}=1$
⇒$\frac{1}{10} \times(-5) \times \log _{x} 3=1$
⇒$-\frac{1}{2} \log _{x} 3=\log _{x} x$
⇒$\log _{x} 3^{-\frac{1}{2}}=\log _{x} x$
⇒$\log _{x} \frac{1}{\sqrt{3}}=\log _{x} x$
∴$x=\frac{1}{\sqrt{3}}$
(iv) $\log _{4} 32=x-4$
⇒$(4)^{x-4}=32$
⇒$\left[(2)^{2}\right]^{x-4}=2 \times 2 \times 2 \times 2 \times 2$
⇒$(2)^{2(x-4)}=(2)^{5}$
⇒$(2)^{2 x-8}=(2)^{5}$
⇒2x-8=5
⇒2x=5+8
⇒2x=13
⇒$x=\frac{13}{2}=6 \frac{1}{2}$
(v) $\log _{7}\left(2 x^{2}-1\right)=2$
⇒$(7)^{2}=2 x^{2}-1$
⇒$49=2 x^{2}-1$
⇒$50=2 x^{2}$
⇒$2 x^{2}=50$
⇒$x^{2}=\frac{50}{2}$
⇒$x^{2}=25$
⇒$x^{2}=\pm \sqrt{25}$
⇒x=+5,-5
(vi) $\log \left(x^{2}-21\right)=2$
⇒$(10)^{2}=x^{2}-21$
⇒$100=x^{2}-21$
⇒$x^{2}-21=100$
⇒$x^{2}=100+21$
⇒$x^{2}=121$
⇒$x=\pm \sqrt{121}$
⇒$x=\pm 11$
∴x=11,--11
(vii) $\log _{6}(x-2)(x+3)=1$
⇒$=1=\log _{6} 6$ $\left\{\because \log _{a} a=1\right\}$
Comparing :
⇒(x-2)(x+3)=6
⇒$x^{2}+3 x-2 x-6=6$
⇒$x^{2}+3 x-2 x-6=6$
⇒$x^{2}+x-6-6=0$
⇒$x^{2}+x-12=0$
⇒$x^{2}+4 x-3 x-12=0$
⇒x(x+4)-3(x+4)=0
Either x+4=0, then x=-4
or x-3=0, then x=3
Hence x=3, -4
(viii) $\log _{6}(x-2)+\log _{6}(x+3)=1$
⇒$\log _{6}(x-2)(x+3)=1=\log _{6} 6$ $\left\{\because \log _{a} a=1\right\}$
Comparing
⇒(x-2)(x+3)=6
⇒$x^{2}+3 x-2 x-6=6$
⇒$x^{2}+x-6-6=0$
⇒$x^{2}+x-12=0$
⇒$x^{2}+4 x-3 x-12=0$
⇒x(x+4)-3(x+4)=0
⇒(x+4)(x-3)=0
Either x+4=0, then x=-4
or x-3=0, then x=3
∴x=3 ,4
(ix) log(x+1)+log(x-1)=log 11+2 log 3
⇒$\log \left[(x+1)(x-1]=\log 11+\log (3)^{2}\right.$
⇒$\log \left(x^{2}-1\right)=\log 11+\log 9$ $\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$
⇒$\log \left(x^{2}-1\right)=\log (11 \times 9)$
⇒$x^{2}-1=11 \times 9$
⇒$x^{2}-1=99$
⇒$x^{2}=99+1$
⇒$x^{2}=100$
⇒$x^{2}=(10)^{2}$
⇒ x=16
Question 8
Solve for x and y:
Sol :
⇒$\frac{\log x}{3}=\frac{\log y}{2}$
⇒2 log x=3 log y
⇒2 log x-3 log y=0..(i)
and log xy=5
⇒log x+log y=5..(ii)
Multiplying (ii) by 3 and (i) by 1
⇒2 log x-3 log y=0
⇒3 log x+3 log y=15
Adding 5 log x=15
⇒$\log x=\frac{15}{5}=3$
⇒$\frac{1}{3} \log x=1=\log 10$
⇒$\log x^{\frac{1}{3}}=\log 10$
∴$x^{\frac{1}{3}}=10$
⇒$x=10^{3}=1000$ (∵log 10=1)
Hence , x=1000
Substituting the value of log x=3 in (ii)
⇒3+log y=5
⇒log y=5-3=2
⇒$\frac{1}{2} \log y=1$
⇒$\log y^{\frac{1}{2}}=\log 10$ (∵log 10=1)
∴$y^{\frac{1}{2}}=10$
⇒$y=(10)^{2}=100$
Hence x=1000 and y=100
Question 9
If $a=1+\log _{x} y z$, $6=1+\log _{y} z x$ and $c=1+\log _{z} x y$, then show that ab+bc+ca=abc.
⇒$a=\log _{x} x y z$
⇒$\frac{1}{a}=\log _{x y z} x$
Similarly
$\frac{1}{b}=\log _{x y z} y$ and $\frac{1}{c}=\log _{x y z} z$
Now $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\log _{x g \varepsilon} x+\log _{x y z} y+\log _{x y z} z$
$=\frac{\log x}{\log _{x y z}}+\frac{\log y}{\log _{x y z}}+\frac{\log z}{\log _{x y z}}$
$=\frac{\log x+\log y+\log z}{\log _{x y z}}$
$=\frac{\log x y z}{\log _{x}}=1$
⇒$\frac{b c+c a+a b}{a b c}=1 $
⇒ab+bc+ca=abc
Hence proved
Comments
Post a Comment