ML Aggarwal Class 8 Chapter 1 Rational Numbers Exercise 1.1
Exercise 1.1
Question 1
Sol :
(i) $\frac{4}{7}+\frac{5}{7}$
⇒$\frac{4+5}{7}$
⇒$\frac{9}{7}$
(ii) $\frac{7}{-13}$ and $\frac{4}{-13}$
⇒$\frac{7}{-13}+\frac{4}{-13}$
⇒$\frac{7\times (-1)}{-13 \times (-1)}+\frac{4\times (-1)}{-13\times (-1)}$ Make denominator as +ve number
⇒$\frac{-7}{13}+\frac{-4}{13}$
⇒$\frac{-7+(-4)}{13}=\frac{-11}{13}$
Question 2
Sol :
To verify $\frac{5}{11}+4 \frac{3}{9}$
$\frac{5}{11}+\frac{39}{9}$
$\frac{5 \times 9+39 \times 11}{99}$ LCM of 11, 9 = 99
⇒$\frac{45+429}{99}$
⇒$\frac{474}{99}=\frac{158}{33}$
(ii) $\frac{-4}{9}+2 \frac{12}{13}$
⇒$\frac{-4 \times 13+38 \times 9}{117}$ L.C.M of 9 , 13=117
⇒$\frac{-52+342}{17}$
⇒$\frac{290}{117}$
Question 3
Sol :
To verify the commutative property of addition, we have to
Show
⇒$\frac{-4}{3}+\frac{3}{7}=\frac{3}{7}+\left(\frac{-4}{3}\right)$
L.H.S⇒$\frac{-4}{3}+\frac{3}{7}$
⇒$\frac{-4 \times 7+3 \times 3}{21}$ LCM OF 3,7 = 21
⇒$\frac{-28+9}{21}$
⇒LCM = $\frac{-19}{21}$
⇒RHS = $\frac{3}{7}+\left(\frac{-4}{3}\right)$
⇒$\frac{3 \times 3+(-4) \times 7}{21} \quad \mathrm{LCM}$ of $3,7=21$
⇒RHS = $\frac{9-28}{21}$
∴ LHS = RHS
⇒$\frac{-4}{3}+\frac{3}{7} a=\frac{3}{7}+\left(\frac{-4}{3}\right)$
(ii) To verify commutative law of addition, we have
to show $\left(\frac{-2}{-5}\right)+\frac{1}{3}=\frac{1}{3}+\left(\frac{-2}{-5}\right)$
LHS ⇒$\frac{-2}{-5}+\frac{1}{3}$
⇒$\frac{-2 x(-1)}{-5 x(-1)}+\frac{1}{3} \quad$ Make denominator +ve number
⇒$\frac{2}{5}+\frac{1}{3}$
⇒$\frac{2 \times 3+1 \times 5}{15} \quad$ Lcm OF $5,3=15$
⇒$\frac{6+5}{15}$
⇒LCM $=\frac{11}{15}$
RHS ⇒
⇒ $=\frac{1}{3}+\frac{2}{5}$
$=\frac{1 \times 5+2 \times 3}{15} \cdot$ LCM of $3,5=15$
$=\frac{5+6}{15}$
R.H.S $=\frac{11}{15}$
LHS = RHS
$\left(\frac{-2}{-5}\right)+\frac{1}{3}=\frac{1}{3}+\left(\frac{-2}{-5}\right)$
∴Commutative law of addition i verified
(iii) $\frac{9}{11}$ and $\frac{2}{13}$
To verity the commutative show of addition, we have to
show $\quad \frac{9}{11}+\frac{2}{13}=\frac{2}{13}+\frac{9}{11}$
⇒L.H.S $=\frac{9}{11}+\frac{2}{13}$
⇒$=\frac{(9 \times 13)+(2 \times 11)}{143} \quad$ LCM OF $11,13=143$
⇒$=\frac{117+22}{143}$
⇒LCM $=\frac{139}{143}$
⇒R.H.S $=\frac{2}{13}+\frac{9}{11}$
$=\frac{(2 \times 10)+(9 \times 13)}{143} \mathrm{LCM}$ of $13,11=143$
⇒$=\frac{22+117}{143}$
RHS $=\frac{139}{143}$
⇒L.H.S $=$ R.H.S
$\frac{9}{11}+\frac{2}{13}=\frac{2}{13}+\frac{9}{11}$
∴ Commutative law of addition is verified
Question 4
Question 5
Question 6
⇒$\left[\frac{4}{5}+\left(\frac{-7}{5}\right)\right]+\left[\frac{11}{7}+\left(\frac{-2}{7}\right)\right]$
(Using Commutative and associativity of addition)
⇒$\left[\frac{4-7}{5}\right]+\left[\frac{11-2}{7}\right]$
⇒$\left[\frac{-3}{5}\right]+\left[\frac{9}{7}\right]$
⇒$\frac{(-3 \times 7)+(9 \times 5)}{35} \quad$ LCM of $5,7=35$
⇒$\frac{-21+45}{35}=\frac{24}{35}$
(ii) $\frac{3}{7}+\frac{4}{9}+\left(\frac{-5}{21}\right)+\frac{2}{3}$
⇒$\left[\frac{3}{7}+\left(\frac{-5}{21}\right)\right]+\left[\frac{4}{9}+\frac{2}{3}\right]$
⇒(By using the commutative and associativity of addition)
⇒$\left[\frac{(3 \times 3)+(-5 \times 1)}{21}\right]+\left[\frac{4 \times 1+2 \times 3}{9}\right] \quad \begin{array}{l}\text { LCM OF } 7,21=21 \\ \text { LCM OF } 9,3=9\end{array}$
⇒$\left[\frac{9-5}{21}\right]+\left[\frac{4+6}{9}\right]$
⇒$\frac{4}{21}+\frac{16}{9}$
⇒$\frac{(4 \times 3)+(10 \times 7)}{63} \quad$ LCM of $21,9=63$
⇒$\frac{12+70}{63} .$
⇒$\frac{82}{63}=$ $\frac{19}{63}$
Question 7
(iv) $\frac{4}{11}+\left[\left(\frac{-7}{12}\right)+\frac{9}{10}\right]=\left[\frac{4}{11}+\left(\frac{-7}{12}\right)\right]+\frac{9}{10}$
(v) $\frac{5}{9}+\left(\frac{-5}{9}\right)=0=\left(\frac{-5}{9}\right)+\frac{5}{9}$
Comments
Post a Comment