ML AGGARWAL CLASS 8 CHAPTER 10 Algebraic Expressions and Identities Exercise 10.3
Exercise 10.3
Question 1
Sol :
(i) (5 x-2)(3 x+4)
5 x(3 x+4)-2(3 x+4)
15x2+20x−6x−8
15x2+14x−8
(ii) (a x+b)(c x+d)
ax(c x+d)+b(c x+d)
acx2+adx+bcx+bd
acx2+(at+bc)x+bd
(iii) (4 p-7)(2-3 p)
4P(2-3 p)=7(2-3 p)
8p−12p2−14+21P
−12p2+29p−14
(iv) (2x2+3)(3x−5)
2x2(3x−5)+3(3x−5)
6x3−10x2+9x−15
6x3−10x2+9x−15
(v) (1.5a−2.5b)(1.5a+2.5b)
1.5a(1.5a+2.5b)−2.5b(1.5a+2.5b)
(1.5×1.5)a2+(1.5×2⋅5)ab−(2.5×1.5)ab−(2.5×2.5)b2
2.25a2+3.75ab−3.75ab−6.25b2
2.25a2+0−6.25b2
2⋅25a2−6.25b2
(vi) (37p2+4q2)(7(p2−34q2)
37pv×(7p2−214q2)+4q2(−1p2−214q2)
3p4−94q2p2+28p2q2−21q4
3p4+1034p2q2−21q4
Question 2
Sol :
(i) (x-2 y+3)(x+2 y)
(i) (x-2 y+3)(x+2 y)
x2+3x+6y−4y2
(ii) (3−5x+2x2)(4x−5)
Question 3
Sol :
(i) (3x2−2x−1)(2x2+x−5)
(i) (3x2−2x−1)(2x2+x−5)
(ii) (2−3y−5y2)(2y−1+3y2)
Question 4
Sol :
(i) (x2+3)(x−3)+9
x2(x−3)+3(x−3)+9
x3−3x2+3x−9+9
x3−3x2+3x
(ii) (x+3)(x-3)(x+4)(x-4)
[x(x-3)+3(x-3)][x(x-4)+4(x-4)]
[x2−3x+3x−9][x2−4x+4x−16]
[x2−9][x2−16]
x2(x2−16)−9(x2−16)
x4−16x2−9x2+144
x4−25x4+144
(iii) (x+5)(x+6)(x+7)
[(x+5)(x+6)](x+7)
[x(x+6)+5(x+6)](x+7)
(x2+6x+5x+30)(x+7)
(x2+6x+5x+30)x+(xv+6x+5x+30)7
(x2+11x+30)x+(x2+11x+30)7
x3+11x2+30x+7x2+77x+210
x3+18x2+107x+210
(iv) (p+q-2 r)(2 p-q+r)-4 q r
p(2 p-q+r)+q(2 p-q+r)-2 r(2 p-q+r)-4 q r
2p2−pq+pr+2pq−q2+qr−4py+2qr−2r2−4qr
2p2−q2−2r2+pq−qr−3pr
(v) (p+q)(r+s)+(p-q)(r-s)-2(p r+q s)
P(r+s)+q(r+s)+p(r-s)-q(r-s)-2 p r-2 q s
p r+p s+q r+q s+p r-p s-q r+q s-2 p r-2 q s
2 p r-2 p r+p s-p s+q r-q r+2 q s-2 q s
0+0+0+0=0
(vi) (x+y+z)(x-y+z)+(x+y-z)(-x+y+z)-4 z x
x(x−y+z)+y(x−y+z)+z(x−y+z)+x(−x+yn+z)+y(-x+y+z)-z(-x+y+z)-4 z x
x2−xy+xz+xy−yv+yz+xz−yz+z2−x2+xy+xz −xy+y2+yz+xz−yz−z2−4zx
x2−x2+2xy−2xy+4xz−4xz−yN+y2+2yz−2yz +z2−z2
0+0+0+0+0+0=0
Question 5
Sol :
Sides of rectangles s1=5x2+25xy+4y2
S2=2x2−2xy+3yr
Area of rectangle =S1×S2
A=(5x2+25xy+4y2)(2x2−2xy+3y2)
A=10x4+40x3y−27x2y2+67xy3+12y4
Comments
Post a Comment