ML AGGARWAL CLASS 8 CHAPTER 10 Algebraic Expressions and Identities Exercise 10.4
Exercise 10.4
Question 1
Sol :
(i) $-39 p q^{2} r^{5} \div-24 p^{3} q^{3} r$
$=\frac{-39 p q^{x}+5}{-24 p^{3} q^{3} r}$
$\frac{13 \cdot r^{4}}{8 p^{2} q}$
(ii) $-\frac{3}{4} a^{r} b^{3} \div \frac{6}{7} a^{3} b^{2}$
=$\frac{\frac{-3}{4} a^{2} b^{3}}{\frac{6}{7} a^{3} b^{2}}$
$=\frac{-3}{4} \times \frac{7}{6}-\frac{b}{a}$
$=\frac{-7 b}{8 a}$
Question 2
Sol :
(i)
$3 x^{3}-\frac{8}{3} x^{2}-4$
$\begin{array}{l}3 x \sqrt{9 x^{4}-8 x^{3}-12 x+3} \\\frac{\left(-9 x^{4}\right.}{0-8 x^{3}} \\\frac{(+)^{-8 x^{3}}}{0-12 x} \\\frac{\frac{1-12 x}{}}{0+3}\end{array}$
Quotient $=3 x^{3}-\frac{8}{3} x^{2}-4 ;$ Remainder $=3$
(ii)
Quotient =3 x+5, Remainder =0
Question 3
Sol :
(i)
Quotient =3 x+5 , Remainder =0
(ii)
Quotient $=y^{2}$-y-1 Remainder =2
(iii)
Quotient =-2 x+3, Remainder =2
(iv)
Quotient = $x^{2}-4 x+4$, Remainder =0
Question 4
Sol :
(i)
Quotient $=2 x^{2}+5 x+3$,
Remainder =-4
(ii)
Quotient $=m^{2}-5 m-5$,
Remainder =2
Question 5
Sol :
(i)
Quotient =a+1, Remainder =0
(ii)
Quotient =4 x-3, Remainder =-3
Question 6
Sol :
Given area of rectangle = $8 x^{2}-45 y^{2}+18 x y$
one side $S_{1}=4 x+15 y$
other side $\quad S_{2}=?$
$A=S_{1} \times S_{2}$
$S_{2}=A \div S_{1}$
Quotient =2 x-3 y, Remainder =0
∴ length other side of rectangle
$s_{2}=2 x-3 y$
Comments
Post a Comment