ML AGGARWAL CLASS 8 Chapter 12 Linear Equations and Inqualities In one Variable Exercise 12.1
Exercise 12.1
Question 1
Sol :
(i) 5 x-3=3 x-5
=5 x=3 x-5+3
=5 x=3 x-2
=5 x-3 x=-2
=2 x=-2
x=-1
(ii) 3 x-7=3(5-x)
=3 x-7=15-3 x
=3 x=15+7-3 x
=3 x+3 x=22
=6 x=22
=$x=\frac{22}{6}$
Question 2
Sol :
(i) 4(2 x+1)=3(x-1)+7
=8 x+4=3 x-3+7
=8 x=3 x-3+7-4
=8 x-3 x=-3+3=0
$5 x=0 \Rightarrow x=0$
(ii)
$\begin{aligned} 3(2 p-1)=5-(3 p-2) & \\ 6 p-3=5 &-3 p+2 \\ 6 p=& 5-3 j+2+3 \\ 6 p+3 p &=10 \\ 9 p &=10 \\ p &=\frac{10}{9}=1 \frac{1}{9} \end{aligned}$
Question 3
Sol :
(i) 5 y-2[y-3(y-5)]=6
=5 y-2 y+6(y-5)=6
=3 y+6 y-30=6
=9 y=6+30=36
=$y=\frac{36}{9}=4$
(ii) 0.3(6-x)=0.4(x+8)
=1.8-0.3 x=0.4 x+3.2
=0.4 x=1.8-0.3 x-3.2
=0.4 x+0.3 x=-1.4
=0.7 x=-1.4
=$x=-\frac{1.4}{0.7}=2$
Question 4
Sol :
(i) $\frac{x-1}{3}=\frac{x+2}{6}+3$
Multiply and divide 2 on L.H.S
=$\frac{2(x-1)}{2 \times 3}=\frac{x+2}{6}+3$
=$\frac{2 x-1}{6}-\frac{x+2}{6}=3$
=$\frac{2 x-1-x-2}{6}=3$
=$\frac{x-3}{6}=3$
=$x-3=3 \times 6$
=x-3=18
x=18+3
x=21
(ii) $\frac{x+7}{3}=1+\frac{3 x-2}{5}$
=$\frac{x+7}{3}=\frac{5}{5}+\frac{3 x-2}{5}$
=$\frac{x+7}{3}=\frac{5+3 x-2}{5}$
=$\frac{x+7}{3}=\frac{3 x+3}{5}$
Cross Multiplying
=5(x+7)=3(3 x+3)
=5 x+35=9 x+9
=9 x=5 x+35-9
=9 x-5 x=26
=4 x=26
$x=\frac{26}{4}=\frac{13}{2}=6 \frac{1}{2}$
Question 5
Sol :
(i) $\frac{y+1}{3}-\frac{y-1}{2}=\frac{1+2 y}{3}$
Multiplying both sides by 6 i.e L.C.M of $3,2,3$ we get
=2(y+1)-3(y-1)=2(1+2 y)
=2 y+2-3 y+3=2+4 y
=5-y=4 y+2
=4 y+y=5-2
5 y=3
$y=3 / 5$
(ii) $\frac{1}{3}+\frac{p}{4}=55-\frac{p+40}{5}$
=$\frac{4 p+3 p}{12}=\frac{55 \times 5}{5}-\frac{p+40}{5}$
=$\frac{7 p}{12}=\frac{275-p-40}{5}$
$\frac{7 p}{12}=\frac{235-P}{5}$
Cross Multiplication
$7 p \times 5=12(235-p)$
$35 p=12 \times 235-12 p$
$35 p+12 p=12 \times 235$
$47 P=12 \times 235$
$P=\frac{12 \times 2355}{47}$
p=60
Question 6
Sol :
(i) $n-\frac{n-1}{2}=1-\frac{\eta-2}{3}$
$\frac{2 n-(n-1)}{2}=\frac{3-(n-2)}{3}$
$\frac{2 n-n+1}{2}=\frac{3-n+2}{3}$
$\frac{n+1}{2}=\frac{5-n}{3}$
Cross multiplication
3 x(n+1)=2(5-n)
3 n+3=10-2 n
3 n+2 n=10-3
5 n=7
$n=7 / 5$
(ii) $\frac{3 t-2}{3}+\frac{2 t+3}{2}=t+\frac{7}{6}$
$\frac{3 t-2}{3}+\frac{2 t+3}{2}=\frac{6 t+7}{6}$
Multiplying 6 on both sides
2(3 t-2)+3(2 t+3)=1(6 t+3)
6 t-4+6 t+9=6 t+7
6 t+5=7
6 t=7-5=2
t=2 / 6=1 / 3
Question 7
Sol :
(i)
$\begin{aligned} 4(3 x+2)-5(6 x-1) &=2(x-8)-6(7 x-4) \\ 12 x+8-30 x+5 &=2 x-16-42 x+24 \\ 13-18 x=& 8-40 x \\ 40 x-18 x &+13=8 \\ 22 x &=8-13=-5 \\ x &=\frac{-5}{22} . \end{aligned}$
(ii) 3(5 x+7)+5(2 x-11)=3(8 x-5)-15
=15 x+21+10 x-55=24 x-15-15
=25 x-34=24 x-30
=25 x-24 x=34-30
x=4
Question 8
Sol :
(i) $\frac{3-2 x}{2 x+5}=-\frac{3}{11}$
Cross Multiplying both sides
-11(3-2 x)=3(2 x+5)
[22 x-3]=6 x+15
22 x-6 x=33+15
16 x=48
x=3
(ii) $\frac{5 p+2}{8-2 p}=\frac{7}{6}$
cross multiplying on both sides
$\begin{aligned} 6(5 p+2) &=7(8-2 p) \\ 30 p+12 &=56-14 p \\ 30 p+14 p &=56-12 \\ 44 p &=44 \Rightarrow p=1 \end{aligned}$
Question 9
Sol :
(i) $\frac{5}{x}=\frac{7}{x-4}$
Cross multiplying on both sides
$\begin{array}{c}5(x-4)=7 x \\ 7 x=5 x-20 \\ 2 x=-20 \\ x=-10\end{array}$
(ii) $\frac{4}{2 x+3}=\frac{5}{x+4}$
Cross multiplication on both sides
$\begin{aligned} 5(2 x+3) &=4(x+4) \\ 10 x+15 &=4 x+16 \\ 10 x-4 x &=16-15 \\ 6 x &=1 \Rightarrow x=\frac{1}{6} \end{aligned}$
(ii) $\frac{4}{2 x+3}=\frac{5}{x+4}$
Cross multhpicalion on bolh sides
$\begin{aligned} 5(2 x+3)=4(x+4) \\ 10 x+15=4 x+16 \\ 10 x-4 x &=16-15 \\ 6 x=1 & \Rightarrow x=\frac{1}{6} \end{aligned}$
Question 10
Sol :
(i) $\frac{2 x+5}{2}-\frac{5 x}{x-1}=x$
=$\frac{(2 x+5)(x-1)-(51 \times 2)}{2(x-1)}=x$
=$2 x^{2}-2 x+5 x-5-10 x=2 x(x-1)$
=$2 x^{2}+3 x-5-101=2 x^{2}-2 x$
-7 x-5=-2 x
-5=7 x-2 x
5 x=-5
x=-1
(ii) $\frac{1}{5}\left(\frac{1}{3 x}-5\right)=\frac{1}{3}\left(3-\frac{1}{x}\right)$
$\frac{1}{5}\left(\frac{1-15 x}{3 x}\right)=\left(\frac{3 x-1}{3 x}\right)$
1-15 x=5(3 x-1)
1-15 x=15 x-5
15 x+15 x=1+5
30 x=6
$x=\frac{6}{30}=\frac{1}{5}$
Question 11
Sol :
(i) $\frac{2 x-3}{2 x-1}=\frac{3 x-1}{3 x+1}$
Subtracting '1' on both Sides
=$\frac{2 x-3}{2 x-1}-1=\frac{3 x-1}{3 x+1}-1$
=$\frac{2 x-3-2 x+1}{2 x-1}=\frac{3 x-1-3 x-1}{3 x+1}$
=$\frac{-2}{2 x-1}=\frac{-2}{3 x+1}$
=3 x+1=2 x-1
3 x-2 x=-1-1
x=-2
(ii) $\frac{2 y+3}{3 y+2}=\frac{4 y+5}{6 y+7}$
Cross multiplication
(2 y+3)(6 y+7)=(3 y+2)(4 y+5)
$12 y^{2}+14 y+18 y+21=12y^{2}+15 y+8 y+10$
32 y+21=23 y+10
32 y-23 y=10-21
9 y=-11
$y=\frac{-11}{9}$
Question 12
Sol :
x=p+1
$\frac{5 x-30}{2}-\frac{7 p+1}{3}=\frac{1}{4}$
multiplying 12 on both sides
6(5 x-30)-4(7 p+1)=3
30 x-180-28 p-4=3
30(p+1)-180-28 p-4-3=0
30 p+30-180-28 p-7=0
2 p-157=0
$p=\frac{157}{2}$
Question 13
Sol :
$\frac{x+3}{3}-\frac{x-2}{2}=1 \quad$ if $\frac{1}{x}+p=1$
Multiplying 6 on both sides
2(x+3)-3(x-2)=6
2 x+6-3 x+6=8
x=6
$\frac{1}{x}+p=1 \Rightarrow p=1-\frac{1}{x}=1-\frac{1}{6}$
$p=\frac{5}{6}$
Comments
Post a Comment