ML AGGARWAL CLASS 8 Chapter 12 Linear Equations and Inqualities In one Variable Exercise 12.3
Exercise 12.3
Question 1
Sol :
(i) x>-2
Solution set ={-1,0,1,3}
(ii) x<-2
Solution set ={-7,-5,-3}
(iii) x>2
Solution set ={3}
(iv)
$\begin{aligned}-5<x & \leq 5 \\ & \text { Solution set }=\{-3,-1,0,1,3\} \end{aligned}$
(v)
$\begin{aligned}-8<x &<1 \\ & \text { Solution set }=\{-7,-5,-3,-1,0\} \end{aligned}$
(vi)
$\begin{aligned} 0 \leq x & \leq 4 \\ & \text { Solution set }=\{0,1,3\} \end{aligned}$
Question 2
Sol :
It shown by thick dots on number line (i) $x \leq 4, x \in N$
(ii) $x<5, x \in W$
(iii) $-3 \leq x<3, x \in \mathbb{L}$
Sol :
Replacement Set ={-6,-4,-2,0,2,4,6}
$-4 \leq x<4$
Question 4
Sol :
(i) {1,2,3 ...10}
(ii) {-1,0,1,2,5,8}
(iii) {-5,10}
(iv) {5,6,7,8,9,10}
Solution Set=$\phi$
Question 5
Sol :
(i) 2 x-3>7
2 x>7+3
2 x>10
x>5
Solution set ={6,9,12}
(ii) $\begin{aligned} 3 x+8 \leq & 2 \\ 3 x \leq & 2-8 \\ 3 x & \leq-6 \\ x & \leq-2 \end{aligned}$
Solution set ={-6,-3}
(iii) -3<1-2 x
3>2 x-1
2 x-1<3
2 x<3+1
2 x<4
x<2
Solution set ={-6,-3,0}
Question 6
Sol :
(i) $\begin{aligned} 4 x+1 &<17, x \in N 1 \\ 4 x &<17-1 \\ 4 x &<16 \\ x &<4, x \in N \end{aligned}$
As $x \in N$, the Solution set is {1,2,3}
(ii) $\begin{aligned} 4 x+1 & \leq 17, x \in W \\ 4 x & \leq 17-1 \\ 4 x & \leq 16 \\ x & \leq 4 \end{aligned}$
As $x \in W$, the solution set is {0,1,2,3,4}
(iii) $\begin{array}{rl}4>3 x-11 & , x \in N \\ 3 x-11 & <4 \\ 3 x & <4+11 \\ 3 & 3 x<15 \\ & x<5\end{array}$
As $x \in N$, the solution set is $\{1,2,3,4\}$
(iv)$-17 \leq 9 x-8, x \in z$
$9 x-8 \geq-17$
$9 x \geq-17+8$
$9 x \geq-9$
$x \geq-1$
As x+z, the solution set is {-1,0,1,2,3 ...}
Question 7
Sol :
(i) $\frac{2 y-1}{5} \leq 2, y \in N$
$2 y-1 \leq 10$
$2 y \leq 10+1$
$2 y \leq 11$
$y \leq \frac{11}{2}$
As $y \in N$, the solution set is $\{1,2,3,4,5\}$
(ii) $\frac{2 y+1}{3}+1 \leq 3, y \in w$
$\frac{2 y+1}{3} \leq 3-1$
$\frac{2 y+1}{3} \leq 2$
$2 y+1 \leq 6$
$2 y+6-1$
$2 y \leq 5$
$y \leq \frac{5}{2}$
As $y \in W$, the solution set is $\{0,1,2\}$
(iii) $\frac{2}{3} p+s<9, p \in W .$
$\frac{2}{3} p<9-5$
$\frac{21}{3}<4$
2 p<12
p<6
As $p \in W$, the solution set is {0,1,2,3,4,5}
(iv) $-2(p+3)>5 \quad p \in I$
Multiplying '- ' on both sides
2(p+3)<-5
2 p+6<-5
2 p<-5-6
2 p<-11
$p<-\frac{11}{2}$
As $p \in I$, the solution set is {...-9,-8,-7,-6}
Question 8
Sol :
(i) $2 x-3<x+2, x \in N$
2x<x+2+3
2 x-x<5
x<5
As $x \in N$, the Solution set is {1,2,3,4}
(ii) $3-x \leq 5-3 x, \quad x \in W$
$3-x+3 x \leq 5$
$2 x+3 \leq 5$
$2 x \leq 5-3$
$2 x \leq 2$
$x \leq 1$
As $x \in W$, the solution set is {0,1}
(iv) $\frac{3}{2}-\frac{x}{2}>-1, \quad x \in N$
$\frac{3-x}{2}>-1$
3-x>-2
Multiplying with '- ' on son sides
x-3<2
x<2+3
x<5
As $x \in N$, the solution set is {1,2,34}
Question 9
Sol :
{-3,-2,-1,0,1,2,3}
{-3,-2,-1,0,1,2,3}
$\begin{aligned} \frac{3 x-1}{2} &<2 \\ 3 x-1 &<4 \\ 3 x-4 &<4+1 \\ 3 x &<5 \end{aligned}$
$x<5 / 3$
As x should be in replacement set, the solution
set is {-3,-2,-1,0,1}
Question 10
Sol :
$\frac{x}{3}+\frac{1}{4}<\frac{x}{6}+\frac{1}{2}, x \in w$
$\frac{x}{3}-\frac{x}{6}+\frac{1}{4}<\frac{1}{2}$
$\frac{x}{3}-\frac{x}{6}<\frac{1}{2}-\frac{1}{4}$
$\frac{2 x-x}{6}<\frac{2-1}{4}$
$\frac{x}{6}<\frac{1}{4}$
$x<\frac{6}{4}$
$x<\frac{3}{2}$
As $x \in W$, the solution set is {0,1}
Question 11
Sol :
(i)
$\begin{aligned}-4 \leq 4 x<14, & x \in N \\ 4 x \geqslant-4 ; & 4 x<14 \\ x \geqslant-1 ; & x<14 / 4 \\ & x<7 / 2 \end{aligned}$
As $x \in N$, the solution set is {-1,0,1,2,3}
(ii) $-1<\frac{x}{2}+1 \leq 3, \quad x \in I$
$\frac{x}{2}+1>-1 \quad ; \quad \frac{1}{2}+1 \leq 3$
$\frac{x}{2}>-1-1 \quad ; \quad \frac{x}{2} \leq 3-1$
$\frac{x}{2}>-2 ; \quad \frac{x}{2} \leq 2$
$x>-4 ; \quad x \leq 4$
i.e $-4<x \leq 4$
As $x \in I$, the solution set is {-3,-2,-1,0,1,2,3,4}
Comments
Post a Comment