ML AGGARWAL CLASS 8 CHAPTER 3 SQUARES AND ROOTS Exercise 3.1
Exercise 3.1
Question 1
(i) 729
Sol :
Prime fractorisation
$\begin{array}{r|l}3&729\\ \hline 3& 243 \\ \hline 3&81\\ \hline 3& 27\\ \hline 3& 9 \\ \hline 3&3\\ \hline&1\end{array}$
⇒729=3×3×3×3×3×3
∴$729=27^{2}$
because 729 can be expressed as product of pairs of equal prime factors.
(ii) 5488
Sol:
$\begin{array}{r|l}2& 5488\\ \hline 2& 2744 \\ \hline 2&1372\\ \hline 2& 686\\ \hline 7& 343 \\ \hline 7&49\\ \hline 7&7\\ \hline&1\end{array}$
⇒5488= 2×2×2×2×7×7×7
Since 7 left unpaired 5488 in not a perfect square
(iii)1024
Sol:
$\begin{array}{r|l}2&1024\\ \hline 2& 512 \\ \hline 2&256\\ \hline 2& 128\\ \hline 2& 64 \\ \hline 2&32\\ \hline2&16 \\ \hline 2&8\\ \hline 2&4\\ \hline 2&2\\ \hline&1\end{array}$
⇒1024= 2x2x2x2x2x2x2x2x2x2x2
since 1024 is expressed as the product of pairs of equal prime number so it is a perfect square
(iv) 243
Sol:
$\begin{array}{r|l}3&243\\ \hline 3& 81 \\ \hline 3&27\\ \hline 3& 9\\ \hline 3& 3 \\ \hline&1\end{array}$
$243=3 \times 3 \times 3 \times 3 \times 3$
As ' 3 ' let unpaired, So 243 is not a square (perfect)
Question 2
(i) 1296
$\begin{array}{r|l}2&1246\\ \hline 2& 648 \\ \hline 2&324\\ \hline 2& 162\\ \hline 3& 81 \\ \hline 3&27\\ \hline3&9 \\ \hline 3&3\\ \hline&1\end{array}$
⇒1296=2x2x2x2x3x3x3x3
since 1296 is expressed as the product of pairs of equal prime numbers so it is a perfect square
1296= $2^{2} \times 2^{2} \times 3^{2} \times 3^{2}$
1296= $(2 \times 2 \times 3 \times 3)^{2}=36^{2}$
∴ 1296 is square of 36
(ii) 1784
Sol:
$\begin{array}{r|l}2&1784\\ \hline 2& 892 \\ \hline 2&446\\ \hline 223& 223\\ \hline&1\end{array}$
1784= $=2 \times 2 \times 2 \times 223$
As 1784 can not be expressed as product of pairs of
equal prime factors, so is not a perfect square
(iii) 3025
Sol:
$\begin{array}{r|l}5&3025\\ \hline 5& 605 \\ \hline 11&121\\ \hline&1\end{array}$
$3025=5 \times 5 \times 11 \times 11$
Since 3025 can be expressed as the product of pairs of
equal prime factors.
$3025=(5 \times 11)^{2}=55^{2}$
Hence, 55 is a number whose square is 3025
(iv) 3969
Sol:
$\begin{array}{r|l}3&3969\\ \hline 3& 1323 \\ \hline 3&441\\ \hline 3& 147\\ \hline 3& 49 \\ \hline 7&7\\ \hline&1\end{array}$
$3969=3 \times 3 \times 3 \times 3 \times 7 \times 7$
3969 Can be expressed as product of pairs of
equal prime numbers.
$3969=3^{4} \times 3^{2} \times 7^{2}$
$3969=(3 \times 3 \times 7)^{2}$
$3969=63^{2}$
Hence, 63 is the number whose square is 3969
Comments
Post a Comment