ML AGGARWAL CLASS 8 CHAPTER 5 Playing with Numbers Excercise 5.1
Exercise 5.1
Question 1
Sol :
(i) 89
(i) 89
Let given number be ab i.e 10a+b
∴ 89=$10 \times 8+9$
(ii) $207=2 \times 100+0 \times 10+7$
(iii) $\quad 369=100 \times 3+10 \times 6+9$
Question 2
Sol:
Given number = 34
Number obtained by reversing the digits = 43
sum = 34 + 43 =77 = 7 x 11
(i) when sum is divided by 11, quotient is 7
(ii) Whew sum is divided by 7 , quotient is 11
Question 3
Sol:
Given number =73
Number obtained by reversing the digits =37
Difference =73-37=36=$9 \times 4$
(i) Whew difference is divided by 9, quotient is 4
(ii) When difference is divided by 4 (difference of digits),
quotient is 9
Question 4
Sol:
given number =a b c
numbers obtained by reversing digits = b c a , c ab
sum =a b c+b c a, c a b
(i) When sum divided by 111 , quotient is (a+b+c)
(ii) when sum divided by $(a+b+c),$ quotient is 111
(iii) whew sum divided by 37, quotient is 3(a+b+c)
(iv) when sum divided by 3, quotient is 37(a+b+c)$
Question 5
Sol :
Given number =843
number obtained by reversing digits =348
Difference $=843-348=495=99 \times 5$
(i) When difference divided by 99, quotient =5
(ii) when difference divided by 5, quotient =99
Question 6
Sol :
Let the given number is ab
Sum of digit=11 = a+b=11 $\rightarrow(1)$
From given condition
ba=ab-9
10 X b+a=10 X a+b-9
10(b-a)=(b-a)-9
$10(b-a) - (b-a)=-9
9(b-a) = - 9
b-a= -1....(2)
Solving (1) and (2)
b-a=-1
b+a=11
-------------
2b = 10
b + a =11
5 + a = 11
a = 6
Question 7
Sol :
given : Let given number is ab
given condition
ab - ba = 36
10 a+b-(10 b+a)=36
10(a-b)+(b-a)=36
10(a-b)-(a-b)=36
9(a-b)=36
$a-b=\frac{36}{9}$
a-b=4
∴ Difference of two digits = 4
Question 8
Sol :
Let given number be ab
given condition
sum of two digit number and the number
obtained by reversing the digits is 55
ab+b a=3655
10a+b+10 b+a=3655
10(a+b)+(b+a)=31655
11(a+b)=55
$(a+b)=\frac{55}{11}$
a+b=5
∴ Sum of digits is 5
Question 9
Sol :
Let given digits number be abc
Given
unit's digits ten's digit and hundred's digit
are in the ratio 1 : 2 : 3
∴ c : b : a = 1 : 2 : 3---------- ①
and
$\quad a b c-c b a=594 \rightarrow(2)$
100 a+10 b+c-(100 c+10 b+a)=594
100(a-c)+10 b-10 b+(c-a)=594
100(a-c)+0-(a-c)=594
99(a-c)=594
$a-c=\frac{594}{99}$
$a-c=6 \rightarrow(3)$
given c ; b: a=1: 2: 3
let
$c=1 \times x$
$b=2 \times x$
$a=3 \times x$
Substitute a, c values in (3)
$\begin{aligned} 3 x-1 x &=6 \\ 2 x &=6 \\ x &=6 / 2 \\ x &=3 \end{aligned}$
$\begin{aligned} \therefore \quad a &=3 \times 3=9 \\ \ b &=2 \times 3=6 \\ c &=1 \times 3=3 \end{aligned}$
∴ given number is 963
Question 10
Sol :
Let the given number be = abc
given
c = a + 1 --------1
b = a - 1 ---------2
given sum of original number and numbers
obtained by reversing cyclically is 2664
abc + bca + cab = 2664 --------3
but abc + bca + cab = 111 X ( a + b + c )--------4
∴ from eq-(3) and eq-(4)
$111 \times(a+b+c)=2664$
$a+b+C=\frac{2664}{111}$
a+b+c=24
a+a-1+a+1=24 (∵ From 1,2)
3a=24
$a=\frac{24}{3}$
a=8
c=a+1=8+1=9
b=a-1=8-1=7
∴ given number is 879
Comments
Post a Comment