ML AGGARWAL CLASS 8 CHAPTER 7 Percentage Exercise 7.1
Exercise 7.1
SOLUTION 1
Sol :(i) 356 %
$\Rightarrow \frac{356}{10025}=\frac{89}{25}$
(ii) $2 \frac{1}{2}-1$
=$\frac{5}{2} \%$
=$\frac{8}{2 \times 100}=\frac{1}{40}$
(ii)
= $\begin{array}{ll} & 16 \frac{2}{3} \\ \Rightarrow & \frac{50}{3} \% \\ & \frac{50}{3 \times 100}=\frac{1}{6}\end{array}$
SOLUTION 2
Sol :
(i) $\frac{3}{2}$
= $\frac{3}{2} \times 100 \%=150 \%$
(ii) $\frac{9}{20}$
= $\left(\frac{9}{20} \times 100\right) \%=36 \%$
(iii) $1 \frac{1}{4}$
$\left(\frac{5}{4} \times 100\right) \%=125 \%$
SOLUTION 3
Sol :
(i) $\frac{3}{4}$
$\Rightarrow 0.75$, Decimal.
when we converting decimals into percentages
then $\Rightarrow \quad 0.75 \times 100$
$\Rightarrow \quad 75 \%$
(ii)
$\begin{aligned} & \frac{5}{8} \\ \Rightarrow & 0.62 \\ \Rightarrow & 0.625 \times 100 \\ \Rightarrow & 62.5 \% \end{aligned}$
(iii)
=$\frac{3}{16}$
=$0.1875$
=$0.1875 \times 100$
=$18.75 \%$
SOLUTION 4
Sol :
(i)
=$\frac{2}{3}$
$\Rightarrow 0.6666 \quad \rightarrow$ Decimal
while converting decimals into percentage we
have to multiply with 100
$\Rightarrow \quad 0.6666 \times 100$
$\Rightarrow \quad 66.66 \%$
(ii)
$\begin{aligned} & \frac{5}{6} \\ &=0.83333 \\ \Rightarrow & 0.8333 \times 100 \\ \Rightarrow & 83.33 \% \end{aligned}$
(iii)
$\begin{aligned} & \frac{4}{7} \\ \rightarrow & 0.5714 \\ &=0.5714 \times 100 \\ \Rightarrow & 57.14 \% \end{aligned}$
SOLUTION 5
Sol :
(i)
$\begin{aligned} & 17: 20 \\ \Rightarrow & \frac{17}{20} \\ \Rightarrow & \frac{17}{20} \times 10^{5} 0 \\ \Rightarrow & 17 \times 5 \\ \Rightarrow & 85 \% \end{aligned}$
(ii) $\frac{13}{18}: 18$
=$\frac{13}{18}$
=$\frac{13}{18} \times 100$
=$72.22 \%$
(iii) $93: 80$
=$\frac{93}{88} \times 100$
=$116.25 \%$
SOLUTION 6
Sol :
(i) 20 %
=$\frac{20}{100}$
=$\quad \frac{1}{5}$
=0.2
(ii)
⇒2.1
=$\quad \frac{2}{100150}$
=$\frac{1}{50}$
= 0.02
(iii)
$3 \frac{1}{4} \%$
=$\frac{7}{4}$
=$\frac{7}{4 \times 100}$
=0.0175
SOLUTION 7
Sol :
(i) $27 \%$ of 750
=$\frac{27}{100} \times 50$
=$\frac{27}{2}$
=$₹ 13.5$
(ii) $6 \frac{1}{4} \%$ of $25 \mathrm{~kg}$
⇒$\frac{25}{4} \%$ of $25 \mathrm{~kg}$
⇒$\frac{\frac{25}{4}}{100} \times 25$
⇒$\frac{25}{4 \times 100} \times 25$
⇒$\frac{25}{16} \quad$ (or) $1 \frac{9}{16} \mathrm{~kg}$
⇒$1.56 \mathrm{~kg}$
SOLUTION 8
Sol :
(i)
$\begin{aligned} 300 \mathrm{~g} \text { of } 2 \mathrm{~kg} & \\ 2 \mathrm{~kg}=(2 \times 1000) \mathrm{g} &=2000 \mathrm{~g} \\ \text { Required percentage } &=\left(\frac{300}{2000} \times 100\right) \% \\ &=15 \% \end{aligned}$
(ii) $₹ 7 .50$ of 26
$₹6=(6 \times 100)$ paise
Required percentage $=\frac{750 \times 100}{600}$
$=125 \%$
SOLUTION 9
Sol :
(i)
$\begin{aligned} 50 \mathrm{~kg} \text { is } 65 \mathrm{~kg} \text { } \\ \text { Required percentage } &=\frac{65}{50} \times 100 \mathrm{} \\ &=130 \mathrm{~kg} . \end{aligned}$
(ii) $\begin{aligned} ₹ 9 \text { is } ₹ 4 & \\ \text { Required percentage } &=\frac{4}{9} \times 100 \\ &=\frac{400}{9} . \\ &=44 \frac{4}{9} \% \end{aligned}
SOLUTION 10
Sol :
(i) $16 \frac{2}{3} \%$ of number is 25
let the required number be $x$ '
According to given condition, $16 \frac{2}{3} \%$ of $x$ is 25
$\therefore \quad \frac{16 \frac{2}{3}}{100} \times x=25$
$\frac{50}{3 \times 100} \times x=25$
x=\frac{3 \times 100 \times 25}{50}$
$x=150$
(ii) let the number be 'x '
Given condition is 13.25\% of $x$ is 159
$\begin{array}{l}x=\frac{159 \times 100}{13.25} \\ x =1200\end{array}$
SOLUTION 11
Sol :
(i) New number $=\left(1+\frac{30}{100}\right) \times 60$
$\because\left(1+\frac{x}{100}\right)$ -f originel number $]$
=$\left(\frac{100+30}{100}\right) \times 60$
=$\frac{130}{100} \times 60$
=78
(ii)
$\begin{aligned} \text { Naw number } &=\left(1-\frac{x}{100}\right) \text { of original } \\ &=\left(1-\frac{10}{100}\right) \times 750 \\ &=\left(\frac{100-10}{100}\right) \times 750 \\ &=\frac{90}{100} \times 750 \\ &=675 \end{aligned}$
SOLUTION 12
Sol :
(i) $\quad\left(1+\frac{x}{100}\right)$ of original $=$ New number
$\left(1+\frac{15}{100}\right) \times x=299$
$\frac{115}{100} \times x=299$
$\left(\frac{100+15}{100}\right) \times x=209$
$x=\frac{299 \times 100}{115}$
x =260
(ii) $\left(1-\frac{18}{100}\right) \times x=697$
let number be x
$\therefore \quad\left(\frac{100-18}{100}\right) \times x=697$
$\frac{82}{100} \times x=697$
$x=\frac{697 \times 100}{82}$
x=850
SOLUTION 13
Sol :
(i) let the monthly salary is 'x'
Mr. khana spent 83 % and saved 1870
savings = 100 - 83
= 17 %
17 % of x = 1870
$\begin{aligned} 17 \% \text { of } x &=1870 \\ \frac{17}{100} \times x &=1870 \\ x &=\frac{1870 \times 100}{17} \\ &=110 \times 100 \\ x &=\{11,000\end{aligned}$
∴ monthly salary is rs 11000
SOLUTION 14
Sol :
let the total strength of school is 'x'
given 38 % of the students are girls
so = 100 - 38
= 62 % is boys
Number of boys $=1023$
i.e. 62 % of x=1023
$\frac{62}{100} \times x=1023$
$x=\frac{1023 \times 100}{62}$
=1650
SOLUTION 15
Sol :
The price of article increased from rs 960 to rs 1080
original price = 960
Increase in price = 1080 - 960
= 120
percentage increase = $\frac{\text { Increase in price }}{\text { original value }} \times 100$
$\frac{120}{960} \times 100$
12.5 %
SOLUTION 16
Sol :
(i) Given , the total no of eligible voters = 1 lakh
= 1,00,000
loser polled = 42%
winner polled = 100- 42
= 58 %
Loser lost by 14400 votes.
$\therefore$ winner- loser $=14,400$
58% -42 %=14,400
16%=14,400
let the total no. of voter polled
$\begin{aligned} 16 \% \text { of } &=14,400 \\ \frac{16}{100} \times x &=14,400 \\ x &=\frac{14,400 \times 100}{16} \\ x &=90,000 \end{aligned}$
∴ The percentage of voters did not vote
= 1,00,000 - 90,000
= 10,000
i.e 10 %
SOLUTION 17
Sol :
Given total candidate = 8000
60% were boys
i. e $\frac{60}{100} \times 8000=4800$
girls = 8000 - 4800
= 3200
passed candidates was
$\begin{aligned}80 \% \text { of boys } &=\frac{80}{100} \times 4800 \\90 \% \text { of } \dot{9}+girls &=3840 \\&=\frac{90}{100} \times 3200 \\&=2880 .\end{aligned}$
Total no of candidate passed in exam
i.e 3840 + 2380= 6720
Number of candidates who failed
800 - 6720
= 1280
SOLUTION 18
Sol :
(i) Given, $\frac{1}{4}$ of students failed in both in
English and maths ie, $25 \%$
$35 \%$ students failed in maths
$30 \%$ students failed in English.
$\begin{aligned} \therefore \text { percentage of students who failed in } \\ \text { only maths } &=35 \%-25 \% \\ &=10 \% \end{aligned}$
$\begin{aligned} \text { percentage of students who failed in } \\ \text { only English } &=30 \% 25 \% \\ &=5 \% \end{aligned}$
$\begin{aligned} \therefore \text { percentage of students who failed in } \\ \text { any of the subjects } &=25+i 0+5 \\ &=40 \% \end{aligned}$
(ii) percentage of students who passed 'in
both the subjects $=100-40$
$=60 \%$
(iii) Given no. of students who failed only in
$\begin{aligned} \text { english }=25 \quad \Rightarrow \quad 5 \%=25 \\ \therefore \text { Total noof students }=100 \% &=\frac{100}{5} \times 25 \\ &=500 \% \end{aligned}$
SOLUTION 19
Sol :
Let the price of the article be 'x'
The price of article increased by 16%
So $\left(1+\frac{16}{100}\right) \times x=1479$
$\left(\frac{100+16}{100}\right) \times x=1479$
$\frac{116}{100} \times x=1479$
$x=\frac{1479 \times 100}{116}$
x=1275
$\therefore$ Original price of article is 12751
SOLUTION 20
Sol :
Let the Prathibha weight is 'x' kg
Prathiba weight reduced by 15%
So, $\left(1-\frac{15}{100}\right) \times x=59.5$
$\left(\frac{100-15}{100}\right) \times x=59.5$
$\frac{85}{100} \times x=59.5$
$x=\frac{59.5 \times 100}{85}$
x=70
SOLUTION 21
Sol :
(i) As per given condition,
shop reduces all its prices by 15\%
the original price is rs 40
$\therefore$ Let the cost of an article is
$\begin{aligned} x &=40-15 \% \text { of } 40 \\ &=40-\frac{15}{100} \times 40 \\ &=40-6 \\=& 34\end{aligned}$
(ii) Let the original price be 'x'.
The article sold at $2.20 .40$
$\therefore x-15 \% o x=20.40$
$x-\frac{15}{100} x x=20.40$
$\frac{100 x-15 x}{100}=20.40$
$\frac{85 x}{100}=20 \% 0$
$x=\frac{20.40}{85} \times 100$
x=24
Original price of article is 2.24
SOLUTION 22
Sol :
The original price is rs 200
increases by 10 %
⇒ $200+10 \%$ of 200
⇒$200+\frac{10}{100} \times 200$
⇒200+20
⇒220
decreases by 10 %
⇒ 220-10% of 220
⇒$220=\frac{10}{104} \times 220$
⇒220=22
⇒198
original price is 200
final price is 198
No, the final price is not same as original one .
SOLUTION 23
Sol :
Let 'x' be the number of parrots initially chandini have 20% of the parrots away and 5% of them died
No. of parrots remaining $\begin{aligned} \text { now } &=\left[1-\left(\frac{20}{100}+\frac{5}{100}\right)\right] \times(x) \\ &=0.75 x \end{aligned}$
Now,
45% of the remaining parrots were sold
⇒ 55% of remaining parrots were with chandini
Therefore ,
No of parrots chandini is having finally = $=\left(\frac{55}{100}\right) \times 0.75 x$ -------①
But
given no of parrots chandini is having = 33 -------②
From ①&②
33 is equal to $\left(\frac{55}{100}\right){0.75 x}$
⇒ $33=\left(\frac{55}{100}\right) \times(0.75) \times x$
⇒ x =80
∴ chandini had purchased 80 parrots
SOLUTION 24
Sol :
Let 'x' be the maximum marks
'y' be the minimum pass marks
A candidate gets 36 % in examination and fails by 24 marks
⇒ $(0.36) \times(x)=y-24$ ------①
Another candidate gets 43% in an examination and gets 18 marks more than that of pass marks
⇒ $(0.43) \times(x)=y+18$--------②
⇒ solving equation (1) and (2), we get
=0.36 x+24=0.43 x-18
⇒$\frac{0.7 x}{10}=42$
⇒ x=600 maximum marks
Substituting x = 600 in equation 1
⇒ $(0.3 t) \times 600=y-24$
⇒ y= 240
percentage of pass marks = $\frac{y}{x} \times 100 \%$
⇒ $\frac{240}{600} \times 100$ % of pass marks = 40 %
Comments
Post a Comment