ML Aggarwal Solution Class 10 Chapter 15 Circles Exercise 15.1
Exercise 15.1 Question 1 Using the given information, find the value of x in each of the following figures : Sol : (i) ∠ADB and ∠ACB are in the same segment. ∠ADB = ∠ACB = 50° Now in ∆ADB, ∠DAB + X + ∠ADB = 180° (Angles of a triangles) $\Rightarrow 42^{\circ}+x+50^{\circ}=180^{\circ}$ $\Rightarrow x+92^{\circ}=180^{\circ}$ $\Rightarrow x=180^{\circ}-92^{\circ}=88^{\circ}$ (ii) ∠ABD=∠ACD (Angles in the same segment) But ∠ACD=32° ∴∠ABD=32° Now in ΔABD ∠ABD+∠ADB+∠DAB=180° ⇒32°+45°+x=180° ⇒77°+x=180° ⇒x=180°-77°=103° (iii) ∠BAD=∠BCD (Angles in the same segement) But ∠BAD=20° $\therefore \angle B C D=20^{\circ}$ $\because \angle \mathrm{CEA}=90^{\circ}$ $\therefore \angle \mathrm{CED}=90^{\circ}$ Now in $\Delta$ CED, $\angle C E D+\angle B C D+\angle C D E=180^{\circ}$ $\Rightarrow 90^{\circ}+20^{\circ}+x=180^{\circ}$ $\Rightarrow 110^{\circ}+x=180^{\circ}$ $\Rightarrow x=180^{\circ}-110^{\circ}=70^{\circ}$ (iv) In ΔABC ∠ABC+∠ACB+∠BAC=180° (∵Sum of angles of a triangle) $\Rightarrow 69...
Pl. Replace VAT to GST. VAT is not in course
ReplyDeletePl. Replace VAT TO GST. VAT is not in course.
ReplyDelete